Role of lateral mantle flow in the evolution of subduction systems: insights from laboratory experiments

被引:117
作者
Funiciello, F [1 ]
Faccenna, C
Giardini, D
机构
[1] ETH Honggerberg, Inst Geophys, CH-8093 Zurich, Switzerland
[2] Univ Roma TRE, Dipartimento Sci Geol, Rome, Italy
关键词
D O I
10.1111/j.1365-246X.2004.02313.x
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We present 3-D laboratory experiments constructed to investigate the pattern of mantle flow around a subducting slab under different boundary conditions. In particular we present a set of experiments, characterized by different conditions imposed at the trailing edge of the subducting plate (that is, plate fixed in the far field, plate detached in the far field, imposed plate motion). Experiments have been performed using a silicone slab floating inside a honey tank to simulate a thin viscous lithosphere subducting in a viscous mantle. For each set, we show differences between models that do or do not include the possibility of out-of-plane lateral flow in the mantle by varying the lateral boundary conditions. Our results illustrate how a subducting slab vertically confined over a 660-km equivalent depth can be influenced in its geometry and in its kinematics by the presence or absence of possible lateral pathways. On the basis of these results we show implications for natural subduction systems and we highlight the importance of suitable simulations of lateral viscosity variations to obtain a realistic simulation of the history of subduction.
引用
收藏
页码:1393 / 1406
页数:14
相关论文
共 65 条
[1]  
[Anonymous], GEOLOGICAL ASS CANAD
[2]   The development of slabs in the upper mantle: Insights from numerical and laboratory experiments [J].
Becker, TW ;
Faccenna, C ;
O'Connell, RJ ;
Giardini, D .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1999, 104 (B7) :15207-15226
[3]   A sensitivity study of three-dimensional spherical mantle convection at 10(8) Rayleigh number: Effects of depth-dependent viscosity, heating mode, and an endothermic phase change [J].
Bunge, HP ;
Richards, MA ;
Baumgardner, JR .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1997, 102 (B6) :11991-12007
[4]   A laboratory model of subduction zone anisotropy [J].
Buttles, J ;
Olson, P .
EARTH AND PLANETARY SCIENCE LETTERS, 1998, 164 (1-2) :245-262
[5]  
CAHILL T, 1992, J GEOPHYS RES, V97, P503, DOI DOI 10.1029/92JB00493
[6]   EVALUATION OF FORCES THAT DRIVE PLATES [J].
CHAPPLE, WM ;
TULLIS, TE .
JOURNAL OF GEOPHYSICAL RESEARCH, 1977, 82 (14) :1967-1984
[7]  
CHASE CG, 1978, EARTH PLANET SC LETT, V37, P357
[8]   The influence of trench migration on slab penetration into the lower mantle [J].
Christensen, UR .
EARTH AND PLANETARY SCIENCE LETTERS, 1996, 140 (1-4) :27-39
[9]   THE INTERACTION OF A SUBDUCTING LITHOSPHERIC SLAB WITH A CHEMICAL OR PHASE-BOUNDARY [J].
CHRISTENSEN, UR ;
YUEN, DA .
JOURNAL OF GEOPHYSICAL RESEARCH, 1984, 89 (NB6) :4389-4402
[10]  
CLOOS M, 1993, GEOL SOC AM BULL, V105, P715, DOI 10.1130/0016-7606(1993)105<0715:LBACOS>2.3.CO