Sequential covariance intersection-based Kalman consensus filter with intermittent observations

被引:10
作者
Wang, Ning [1 ]
Li, Yinya [1 ]
Cong, Jinliang [2 ]
Sheng, Andong [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Automat, Nanjing 210094, Peoples R China
[2] Changshu Inst Technol, Sch Elect & Automat Engn, Changshu 215500, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
state estimation; wireless sensor networks; time-varying systems; Kalman filters; covariance matrices; distributed state estimation; linear time-varying systems; sensor networks; cross-covariances; sequential covariance intersection; SCIKCF; consensus estimates; estimation error; error covariances; Kalman consensus filter; intermittent observations; random losses; DISTRIBUTED STATE ESTIMATION; STOCHASTIC STABILITY; NETWORKED SYSTEMS; PARTICLE FILTERS; FUSION;
D O I
10.1049/iet-spr.2019.0547
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper investigates the distributed state estimation for a class of linear time-varying systems with intermittent observations in sensor networks. Unlike the existing studies in distributed state estimation, this work considers the scenario where the cross-covariances between different sensors are unavailable and the measurements for state estimation encounter intermittent observations and/or random losses. For this practical scenario, a new sequential covariance intersection-based Kalman consensus filer (SCIKCF) is then developed. We show that, with the proposed SCIKCF, each sensor can achieve consensus estimates regardless of the order of fusion. Furthermore, the stability of the SCIKCF as well as the boundedness of the estimation error and the corresponding error covariances are analysed. Finally, three examples are performed to verify the effectiveness of the proposed SCIKCF.
引用
收藏
页码:624 / 633
页数:10
相关论文
共 41 条
[1]   Cubature Kalman Filtering for Continuous-Discrete Systems: Theory and Simulations [J].
Arasaratnam, Ienkaran ;
Haykin, Simon ;
Hurd, Thomas R. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (10) :4977-4993
[2]   A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J].
Arulampalam, MS ;
Maskell, S ;
Gordon, N ;
Clapp, T .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) :174-188
[3]  
Bai Y., 2010, KERNEL FUNCTION BASE
[4]   Consensus-Based Linear and Nonlinear Filtering [J].
Battistelli, G. ;
Chisci, L. ;
Mugnai, G. ;
Farina, A. ;
Graziano, A. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (05) :1410-1415
[5]  
Battistelli G., 2011, 18th IFAC World Congress, P12477, DOI DOI 10.3182/20110828-6-IT-1002.01998
[6]   Kullback-Leibler average, consensus on probability densities, and distributed state estimation with guaranteed stability [J].
Battistelli, Giorgio ;
Chisci, Luigi .
AUTOMATICA, 2014, 50 (03) :707-718
[7]   Particle Learning and Smoothing [J].
Carvalho, Carlos M. ;
Johannes, Michael S. ;
Lopes, Hedibert F. ;
Polson, Nicholas G. .
STATISTICAL SCIENCE, 2010, 25 (01) :88-106
[8]   Control-Theoretical and Topological Analysis of Covariance Intersection Based Distributed Kalman Filter [J].
Chang, Tsang-Kai ;
Mehta, Ankur .
IEEE CONTROL SYSTEMS LETTERS, 2018, 2 (04) :665-670
[9]   Hybrid Consensus-Based Cubature Kalman Filtering for Distributed State Estimation in Sensor Networks [J].
Chen, Qian ;
Yin, Chao ;
Zhou, Jun ;
Wang, Yi ;
Wang, Xiangyu ;
Chen, Congyan .
IEEE SENSORS JOURNAL, 2018, 18 (11) :4561-4569
[10]   An order insensitive sequential fast covariance intersection fusion algorithm [J].
Cong, Jinliang ;
Li, Yinya ;
Qi, Guoqing ;
Sheng, Andong .
INFORMATION SCIENCES, 2016, 367 :28-40