Engineering and Harnessing Giant Atoms in High-Dimensional Baths: A Proposal for Implementation with Cold Atoms

被引:83
作者
Gonzalez-Tudela, A. [1 ]
Munoz, C. Sanchez [2 ]
Cirac, J., I [3 ]
机构
[1] CSIC, IFF, Calle Serrano 113b, Madrid 28006, Spain
[2] Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England
[3] Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany
基金
欧盟地平线“2020”;
关键词
QUANTUM; ABSORPTION;
D O I
10.1103/PhysRevLett.122.203603
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Emitters coupled simultaneously to distant positions of a photonic bath, the so-called giant atoms, represent a new paradigm in quantum optics. When coupled to one-dimensional baths, as recently implemented with transmission lines or SAW waveguides, they lead to striking effects such as chiral emission or decoherence-free atomic interactions. Here, we show how to create giant atoms in dynamical state-dependent optical lattices, which offers the possibility of coupling them to structured baths in arbitrary dimensions. This opens up new avenues to a variety of phenomena and opportunities for quantum simulation. In particular, we show how to engineer unconventional radiation patterns, like multidirectional chiral emission, as well as collective interactions that can be used to simulate nonequilibrium many-body dynamics with no analog in other setups. Additionally, the recipes we provide to harness giant atoms in high dimensions can be exported to other platforms where such nonlocal couplings can be engineered.
引用
收藏
页数:6
相关论文
共 79 条
[1]   Subradiant states of quantum bits coupled to a one-dimensional waveguide [J].
Albrecht, Andreas ;
Henriet, Loic ;
Asenjo-Garcia, Ana ;
Dieterle, Paul B. ;
Painter, Oskar ;
Chang, Darrick E. .
NEW JOURNAL OF PHYSICS, 2019, 21 (02)
[2]   Exponential Improvement in Photon Storage Fidelities Using Subradiance and "Selective Radiance" in Atomic Arrays [J].
Asenjo-Garcia, A. ;
Moreno-Cardoner, M. ;
Albrecht, A. ;
Kimble, H. J. ;
Chang, D. E. .
PHYSICAL REVIEW X, 2017, 7 (03)
[3]   Generation and Detection of a Sub-Poissonian Atom Number Distribution in a One-Dimensional Optical Lattice [J].
Beguin, J. -B. ;
Bookjans, E. M. ;
Christensen, S. L. ;
Sorensen, H. L. ;
Mueller, J. H. ;
Polzik, E. S. ;
Appel, J. .
PHYSICAL REVIEW LETTERS, 2014, 113 (26)
[4]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[5]   Quantum Regime of a Two-Dimensional Phonon Cavity [J].
Bolgar, Aleksey N. ;
Zotova, Julia I. ;
Kirichenko, Daniil D. ;
Besedin, Ilia S. ;
Semenov, Aleksander V. ;
Shaikhaidarov, Rais S. ;
Astafiev, Oleg V. .
PHYSICAL REVIEW LETTERS, 2018, 120 (22)
[6]  
Briegel HJ, 2009, NAT PHYS, V5, P19, DOI [10.1038/nphys1157, 10.1038/NPHYS1157]
[7]  
Bykov V. P., 1975, Soviet Journal of Quantum Electronics, V4, P861, DOI 10.1070/QE1975v004n07ABEH009654
[8]   Atom-field dressed states in slow-light waveguide QED [J].
Calajo, Giuseppe ;
Ciccarello, Francesco ;
Chang, Darrick ;
Rabl, Peter .
PHYSICAL REVIEW A, 2016, 93 (03)
[9]   Colloquium: Quantum matter built from nanoscopic lattices of atoms and photons [J].
Chang, D. E. ;
Douglas, J. S. ;
Gonzalez-Tudela, A. ;
Hung, C. -L. ;
Kimble, H. J. .
REVIEWS OF MODERN PHYSICS, 2018, 90 (03)
[10]   Three-qubit direct dispersive parity measurement with tunable coupling qubits [J].
Ciani, A. ;
DiVincenzo, D. P. .
PHYSICAL REVIEW B, 2017, 96 (21)