Oscillating singularities on cantor sets: A grand-canonical multifractal formalism

被引:42
作者
Arneodo, A
Bacry, E
Jaffard, S
Muzy, JF
机构
[1] ECOLE POLYTECH, CTR MATH APPL, F-91128 PALAISEAU, FRANCE
[2] UNIV PARIS 12, DEPT MATH, FAC SCI & TECHNOL, F-94010 CRETEIL, FRANCE
[3] ENS CACHAN, CMLA, F-94235 CACHAN, FRANCE
关键词
grand-canonical multifractal formalism; invariant measures; fractal functions; cusp singularities; oscillating singularities; Holder exponent; oscillation exponent; singularity spectrum; wavelet analysis; wavelet transform; modulus maxima; minimizing sequences;
D O I
10.1007/BF02181485
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The singular behavior of functions is generally characterized by their Holder exponent. However, we show that this exponent poorly characterizes oscillating singularities. We thus introduce a second exponent that accounts for the oscillations of a singular behavior and we give a characterization of this exponent using the wavelet transform. We then elaborate on a ''grand-canonical'' multifractal formalism that describes statistically the fluctuations of both the Holder and the oscillation exponents. We prove that this formalism allows us to recover the generalized singularity spectrum of a large class of fractal functions involving oscillating singularities.
引用
收藏
页码:179 / 209
页数:31
相关论文
共 49 条
[1]  
AHARONY A, 1989, PHYSICA D, V38
[2]   OSCILLATING SINGULARITIES IN LOCALLY SELF-SIMILAR FUNCTIONS [J].
ARNEODO, A ;
BACRY, E ;
MUZY, JF .
PHYSICAL REVIEW LETTERS, 1995, 74 (24) :4823-4826
[3]   BEYOND CLASSICAL MULTIFRACTAL ANALYSIS USING WAVELETS: UNCOVERING A MULTIPLICATIVE PROCESS HIDDEN IN THE GEOMETRICAL COMPLEXITY OF DIFFUSION LIMITED AGGREGATES [J].
Arneodo, A. ;
Argoul, F. ;
Muzy, J. F. ;
Tabard, M. ;
Bacry, E. .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 1993, 1 (03) :629-649
[4]   THE THERMODYNAMICS OF FRACTALS REVISITED WITH WAVELETS [J].
ARNEODO, A ;
BACRY, E ;
MUZY, JF .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1995, 213 (1-2) :232-275
[5]   CHARACTERIZING LONG-RANGE CORRELATIONS IN DNA-SEQUENCES FROM WAVELET ANALYSIS [J].
ARNEODO, A ;
BACRY, E ;
GRAVES, PV ;
MUZY, JF .
PHYSICAL REVIEW LETTERS, 1995, 74 (16) :3293-3296
[6]   SOLVING THE INVERSE FRACTAL PROBLEM FROM WAVELET ANALYSIS [J].
ARNEODO, A ;
BACRY, E ;
MUZY, JF .
EUROPHYSICS LETTERS, 1994, 25 (07) :479-484
[7]  
Arneodo A., 1996, WAVELETS THEORY APPL, P349
[8]  
ARNEODO A, 1995, ONDELETTES MULTIFRAC
[9]  
ARNEODO A, 1997, IN PRESS J FOURIER A
[10]  
ARNEODO A, IN PRESS P USA FRENC