LIPSCHITZ DEPENDENCE OF VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS WITH RESPECT TO THE PARAMETER

被引:0
作者
Wang, Kaizhi [1 ]
Yan, Jun [2 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai Key Lab Contemporary Appl Math, Shanghai 200433, Peoples R China
关键词
Hamilton-Jacobi equations; viscosity solutions; large-time behavior; Lipschitz dependence; weak KAM theory; DEFINITE LAGRANGIAN SYSTEMS; DIFFUSION; ORBITS;
D O I
10.3934/dcds.2016.36.1649
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M be a closed and smooth manifold and H-epsilon : T* M -> R-1 be a family of Tonelli Hamiltonians for epsilon >= 0 small. For each phi is an element of C(M, R-1), T-t(epsilon)phi(x) is the unique viscosity solution of the Cauchy problem {d(t)w + H-epsilon(x, d(x)w) = 0, in M x (0, +infinity), w vertical bar(t=0) = phi, on M, where T-t(epsilon) is the Lax-Oleinik operator associated with H-epsilon. A result of Fathi asserts that the uniform limit, for t -> +infinity, of T-t(epsilon)phi + c(epsilon)t exists and the limit (phi) over bar (epsilon) is a viscosity solution of the stationary Hamilton-Jacobi equation H-epsilon (x, d(x)u) = c(epsilon), where c(epsilon) is the unique k for which the equation H-epsilon (x, d(x)u) = k admits viscosity solutions. In the present paper we discuss the continuous dependence of the viscosity solution (phi) over bar (epsilon) with respect to the parameter epsilon.
引用
收藏
页码:1649 / 1659
页数:11
相关论文
共 16 条
[1]  
[Anonymous], 1977, LECT NOTES MATH
[2]  
Bernard P, 2007, MATH RES LETT, V14, P503
[3]  
Cheng CQ, 2009, J DIFFER GEOM, V82, P229
[4]  
Cheng CQ, 2004, J DIFFER GEOM, V67, P457
[5]   Action potential and weak KAM solutions [J].
Contreras, G .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2001, 13 (04) :427-458
[6]   VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CRANDALL, MG ;
LIONS, PL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 277 (01) :1-42
[7]   Failure of convergence of the Lax-Oleinik semi-group in the time-periodic case [J].
Fathi, A ;
Mather, JN .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2000, 128 (03) :473-483
[8]  
Fathi A., 2005, WEAK KAM THEOREMS LA
[9]  
KATOK A., 1995, Introduction to the Modern Theory of Dynamical Systems
[10]  
Mane R., 1997, BOL SOC BRAS MAT, V28, P141, DOI [10.1007/BF01233389, DOI 10.1007/BF01233389]