From forced collapse to H II region expansion in Mon R2: Envelope density structure and age determination with Herschel

被引:22
|
作者
Didelon, P. [1 ]
Motte, F. [1 ]
Tremblin, P. [1 ,2 ,3 ]
Hill, T. [1 ,4 ]
Hony, S. [1 ,5 ]
Hennemann, M. [1 ]
Hennebelle, P. [1 ]
Anderson, L. D. [6 ,7 ]
Galliano, F. [1 ]
Schneider, N. [1 ,8 ]
Rayner, T. [9 ]
Rygl, K. [10 ]
Louvet, F. [1 ,11 ]
Zavagno, A. [12 ]
Koenyves, V. [1 ]
Sauvage, M. [1 ]
Andre, Ph [1 ]
Bontemps, S. [8 ]
Peretto, N. [1 ,9 ]
Griffin, M. [9 ,13 ]
Gonzalez, M. [1 ]
Lebouteiller, V. [1 ]
Arzoumanian, D. [1 ]
Bernard, J. -P. [14 ]
Benedettini, M. [15 ]
Di Francesco, J. [16 ,17 ]
Men'shchikov, A. [1 ]
Minier, V. [1 ]
Luong, Q. Nguyen [1 ,18 ]
Palmeirim, P. [1 ]
Pezzuto, S. [15 ]
Rivera-Ingraham, A. [19 ]
Russeil, D. [12 ]
Ward-Thompson, D. [8 ,20 ]
White, G. J. [21 ,22 ]
机构
[1] CEA IRFU CNRS INSU Univ Paris Diderot, CEA Saclay, Lab AIM, F-91191 Gif Sur Yvette, France
[2] Univ Exeter, Astrophys Grp, Exeter EX4 4QL, Devon, England
[3] CEA CNRS INRIA UPS UVSQ, Maison Simulat, USR 3441, Ctr Etud Saclay, F-91191 Gif Sur Yvette, France
[4] Joint ALMA Observ, Santiago, Chile
[5] Heidelberg Univ, Zentrum Astron, Inst Theoret Astrophys, D-69120 Heidelberg, Germany
[6] W Virginia Univ, Dept Phys & Astron, Morgantown, WV 26506 USA
[7] Natl Radio Astron Observ, Green Bank, WV 24944 USA
[8] Univ Bordeaux 2, OASU, F-33076 Bordeaux, France
[9] Cardiff Univ, Cardiff CF103 XQ, S Glam, Wales
[10] European Space Res & Technol Ctr ESA ESTEC, NL-2200 AG Noordwijk, Netherlands
[11] Observ Astronm Nacl, Cerro Calan, Las Condes 1515, Chile
[12] CNRS INSU Univ Provence, Lab Astrophys Marseille, F-13388 Marseille 13, France
[13] Queen Mary Westf Coll, Dept Phys, London E1 4NS, England
[14] CESR, F-31028 Toulouse, France
[15] INAF Ist Astrofis & Planetol Spaziali, I-00133 Rome, Italy
[16] Natl Res Council Canada, Herzberg Inst Astrophys, Victoria, BC V9E 2E7, Canada
[17] Univ Victoria, Dept Phys & Astron, Victoria, BC V8W 3P6, Canada
[18] Natl Astron Observ Japan, Chile Observ, Mitaka, Tokyo 1818588, Japan
[19] Univ Toulouse, UPS OMP, IRAP, CNRS,IRAP, F-31028 Toulouse 4, France
[20] Univ Cent Lancashire, Jeremiah Horrocks Inst, Preston PR1 2HE, Lancs, England
[21] Open Univ, Dept Phys Sci, Milton Keynes MK7 6AA, Bucks, England
[22] Rutherford Appleton Lab, RALspace, Didcot OX11 0QX, Oxon, England
来源
ASTRONOMY & ASTROPHYSICS | 2015年 / 584卷
关键词
ISM: individual objects: Mon R2; stars: protostars; ISM: structure; dust; extinction; H II regions; MASSIVE-STAR-FORMATION; YOUNG STELLAR OBJECTS; RADIO-CONTINUUM OBSERVATIONS; TURBULENT MOLECULAR CLOUDS; FAR-INFRARED OBSERVATIONS; ULTRACOMPACT HII-REGIONS; MONOCEROS R2; REFLECTION NEBULAE; CIRCUMSTELLAR ENVIRONMENT; DYNAMICAL EXPANSION;
D O I
10.1051/0004-6361/201526239
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. The surroundings of H II regions can have a profound influence on their development, morphology, and evolution. This paper explores the effect of the environment on H II regions in the MonR2 molecular cloud. Aims. We aim to investigate the density structure of envelopes surrounding H II regions and to determine their collapse and ionisation expansion ages. The Mon R2 molecular cloud is an ideal target since it hosts an H II region association, which has been imaged by the Herschel PACS and SPIRE cameras as part of the HOBYS key programme. Methods. Column density and temperature images derived from Herschel data were used together to model the structure of H II bubbles and their surrounding envelopes. The resulting observational constraints were used to follow the development of the Mon R2 ionised regions with analytical calculations and numerical simulations. Results. The four hot bubbles associated with H II regions are surrounded by dense, cold, and neutral gas envelopes, which are partly embedded in filaments. The envelope's radial density profiles are reminiscent of those of low-mass protostellar envelopes. The inner parts of envelopes of all four H II regions could be free-falling because they display shallow density profiles: rho(r) alpha r(-q) with q <= 1.5. As for their outer parts, the two compact H II regions show rho(r) alpha r(-q) profile, which is typical of the equilibrium structure of a singular isothermal sphere. In contrast, the central UCH II region shows a steeper outer profile, rho(r) alpha r(-2.5), that could be interpreted as material being forced to collapse, where an external agent overwhelms the internal pressure support. Conclusions. The size of the heated bubbles, the spectral type of the irradiating stars, and the mean initial neutral gas density are used to estimate the ionisation expansion time, t(exp) similar to 0.1 Myr, for the dense UCH II and compact H II regions and similar to 0.35 Myr for the extended H II region. Numerical simulations with and without gravity show that the so-called lifetime problem of H II regions is an artefact of theories that do not take their surrounding neutral envelopes with slowly decreasing density profiles into account. The envelope transition radii between the shallow and steeper density profiles are used to estimate the time elapsed since the formation of the first protostellar embryo, t(inf) similar to 1 Myr, for the ultra-compact, 1 : 5 3 Myr for the compact, and greater than similar to 6 Myr for the extended H II regions. These results suggest that the time needed to form a OB-star embryo and to start ionising the cloud, plus the quenching time due to the large gravitational potential amplified by further in-falling material, dominates the ionisation expansion time by a large factor. Accurate determination of the quenching time of H II regions would require additional small-scale observationnal constraints and numerical simulations including 3D geometry effects.
引用
收藏
页数:25
相关论文
共 4 条
  • [1] Herschel observations in the ultracompact HII region Mon R2
    Fuente, A.
    Berne, O.
    Cernicharo, J.
    Rizzo, J. R.
    Gonzalez-Garcia, M.
    Goicoechea, J. R.
    Pilleri, P.
    Ossenkopf, V.
    Gerin, M.
    Guesten, R.
    Akyilmaz, M.
    Benz, A. O.
    Boulanger, F.
    Bruderer, S.
    Dedes, C.
    France, K.
    Garcia-Burillo, S.
    Harris, A.
    Joblin, C.
    Klein, T.
    Kramer, C.
    Le Petit, F.
    Lord, S. D.
    Martin, P. G.
    Martin-Pintado, J.
    Mookerjea, B.
    Neufeld, D. A.
    Okada, Y.
    Pety, J.
    Phillips, T. G.
    Roellig, M.
    Simon, R.
    Stutzki, J.
    van der Tak, F.
    Teyssier, D.
    Usero, A.
    Yorke, H.
    Schuster, K.
    Melchior, M.
    Lorenzani, A.
    Szczerba, R.
    Fich, M.
    McCoey, C.
    Pearson, J.
    Dieleman, P.
    ASTRONOMY & ASTROPHYSICS, 2010, 521
  • [2] A Herschel-SPIRE survey of the Mon R2 giant molecular cloud: analysis of the gas column density probability density function
    Pokhrel, R.
    Gutermuth, R.
    Ali, B.
    Megeath, T.
    Pipher, J.
    Myers, P.
    Fischer, W. J.
    Henning, T.
    Wolk, S. J.
    Allen, L.
    Tobin, J. J.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 461 (01) : 22 - 35
  • [3] The first CO+ image I. Probing the HI/H2 layer around the ultracompact HII region Mon R2
    Trevino-Morales, S. P.
    Fuente, A.
    Sanchez-Monge, A.
    Pilleri, P.
    Goicoechea, J. R.
    Ossenkopf-Okada, V.
    Roueff, E.
    Rizzo, J. R.
    Gerin, M.
    Berne, O.
    Cernicharo, J.
    Gonzalez-Garcia, M.
    Kramer, C.
    Garcia-Burillo, S.
    Pety, J.
    ASTRONOMY & ASTROPHYSICS, 2016, 593
  • [4] The [O I] fine structure line profiles in Mon R2 and M17 SW: The puzzling nature of cold foreground material identified by [12C II] self-absorption
    Guevara, C.
    Stutzki, J.
    Ossenkopf-Okada, V.
    Graf, U.
    Okada, Y.
    Schneider, N.
    Goldsmith, P. F.
    Perez-Beaupuits, J. P.
    Kabanovic, S.
    Mertens, M.
    Rothbart, N.
    Guesten, R.
    ASTRONOMY & ASTROPHYSICS, 2024, 690