Determinants and inverses of r-circulant matrices associated with a number sequence

被引:18
作者
Bozkurt, Durmus [1 ]
Tam, Tin-Yau [2 ]
机构
[1] Selcuk Univ, Dept Math, Konya, Turkey
[2] Auburn Univ, Dept Math & Stat, Auburn, AL 36849 USA
关键词
r-circulant matrices; inverse; determinant; spectral norm; Frobenius norm; FIBONACCI; NORMS;
D O I
10.1080/03081087.2014.941291
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let W-n = circ(r) (W-1, W-2, ... , W-n) be the r -circulant matrix associated with the numbers defined by the recursive relation W-n = pW(n-1) + qW(n-2) with initial conditions W-0 = a and W-1 = b, where a, b, p, q is an element of Z and n >= 2. We obtain some formulas for the determinants and inverses of Wn. Some bounds for spectral norms of W-n are obtained as applications.
引用
收藏
页码:2079 / 2088
页数:10
相关论文
共 9 条
[1]  
Akbulak M, 2008, HACET J MATH STAT, V37, P89
[2]   Determinants and inverses of circulant matrices with Jacobsthal and Jacobsthal-Lucas Numbers [J].
Bozkurt, Durmus ;
Tam, Tin-Yau .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (02) :544-551
[3]  
Cerin Z, 2006, J COMB NUMBER THEORY, V6, P15
[4]  
Davis PJ., 1970, CIRCULANT MATRICES
[5]  
Horadam A.F., 1965, Fibonacci Q, V3, P161, DOI DOI 10.1080/00150517.1965.12431416
[6]   Spectral decomposition of real circulant matrices [J].
Karner, H ;
Schneid, J ;
Ueberhuber, CW .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 367 :301-311
[7]  
Koshy T., 2001, Pure Appl. Math. (N. Y.)
[8]   On the determinants and inverses of circulant matrices with Fibonacci and Lucas numbers [J].
Shen, Shou-Qiang ;
Cen, Jian-Miao ;
Hao, Yong .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (23) :9790-9797
[9]   On the bounds for the norms of r-circulant matrices with the Fibonacci and Lucas numbers [J].
Shen, Shouqiang ;
Cen, Jianmiao .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (10) :2891-2897