Lifts of Lipschitz maps and horizontal fractals in the Heisenberg group

被引:24
作者
Balogh, Zoltan M.
Hoefer-Isenegger, Regula
Tyson, Jeremy T.
机构
[1] Univ Bern, Dept Math, CH-3012 Bern, Switzerland
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
D O I
10.1017/S0143385705000593
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider horizontal iterated function systems in the Heisenberg group H-1, i.e. collections of Lipschitz contractions of H-1 with respect to the Heisenberg metric. The invariant sets for such systems are so-called horizontal fractals. We study questions related to connectivity of horizontal fractals and regularity of functions whose graph lies within a horizontal fractal. Our construction yields examples of horizontal BV (bounded variation) surfaces in H-1 that are in contrast with the non-existence of horizontal Lipschitz surfaces which was recently proved by Ambrosio and Kirchheim.
引用
收藏
页码:621 / 651
页数:31
相关论文
共 29 条
[1]   Rectifiable sets in metric and Banach spaces [J].
Ambrosio, L ;
Kirchheim, B .
MATHEMATISCHE ANNALEN, 2000, 318 (03) :527-555
[2]  
Ambrosio L., 2000, OXFORD MATH MONOGRAP
[3]   Hausdorff dimensions of self-similar and self-affine fractals in the Heisenberg group [J].
Balogh, ZM ;
Tyson, JT .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2005, 91 :153-183
[4]  
Balogh ZM, 2003, J REINE ANGEW MATH, V564, P63
[5]   Comparison of Hausdorff measures with respect to the Euclidean and the Heisenberg metric [J].
Balogh, ZM ;
Rickly, M ;
Cassano, FS .
PUBLICACIONS MATEMATIQUES, 2003, 47 (01) :237-259
[6]   Hausdorff dimension distribution of quasiconformal mappings on the heisenberg group [J].
Balogh, ZM .
JOURNAL D ANALYSE MATHEMATIQUE, 2001, 83 (1) :289-312
[7]  
Bellaiche A., 1996, Sub-Riemannian Geometry, Progress in Mathematics, P1, DOI [10.1007/978-3-0348-9210-0, DOI 10.1007/978-3-0348-9210-0, 10.1007/978-3-0348-9210-0\\1]
[8]   ON CONTACT MANIFOLDS [J].
BOOTHBY, WM ;
WANG, HC .
ANNALS OF MATHEMATICS, 1958, 68 (03) :721-734
[9]  
CAPOGNA L, 1995, UNPUB MATH, V86, P267
[10]  
Falconer K., 1990, FRACTAL GEOMETRY MAT, V2