A Butler-type oscillation theorem for second-order dynamic equations on discrete timescales

被引:2
作者
Jia, Baoguo [1 ]
Erbe, Lynn [2 ]
Peterson, Allan [2 ]
机构
[1] Zhongshan Univ, Sch Math & Comp Sci, Guangzhou 510275, Guangdong, Peoples R China
[2] Univ Nebraska, Dept Math, Lincoln, NE 68588 USA
基金
中国国家自然科学基金;
关键词
superlinear; dynamic equation; timescale; non-oscillatory solution; DIFFERENTIAL-EQUATIONS;
D O I
10.1080/10236198.2013.791689
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider an extension of some results to dynamic equations on discrete timescales originally due to Butler for second-order superlinear differential equations. As an application, we get that the superlinear difference equation Delta(2)x(n - 1) + (-1)(n)/n(c) x(gamma)(n) = 0, gamma > 1 is oscillatory, if 0 < c <= 1.
引用
收藏
页码:671 / 684
页数:14
相关论文
共 22 条