Genomics-Assisted Breeding for Quantitative Disease Resistances in Small-Grain Cereals and Maize

被引:32
作者
Miedaner, Thomas [1 ]
Boeven, Ana Luisa Galiano-Carneiro [1 ,2 ]
Gaikpa, David Sewodor [1 ]
Kistner, Maria Belen [1 ,3 ,4 ]
Grote, Catherine Pauline [1 ]
机构
[1] Univ Hohenheim, State Plant Breeding Inst, Fruwirthstr 21, D-70599 Stuttgart, Germany
[2] Kleinwanzlebener Saatzucht KWS SAAT SE & Co KGaA, D-37574 Einbeck, Germany
[3] Inst Nacl Tecnol Agr INTA, Estn Expt Pergamino, CC31,B2700WAA, Pergamino, Argentina
[4] Consejo Nacl Invest Cient & Tecn CONICET, Godoy Cruz 2290,C1425FQB, Buenos Aires, DF, Argentina
关键词
resistance breeding; small-grain cereals; Fusarium head blight; wheat; Septoria tritici blotch; Septoria nodorum blotch; maize; Gibberella and Fusarium ear rot; Northern corn leaf blight; multi-disease resistance (MDR); genetic resources; EAR ROT RESISTANCE; FUSARIUM HEAD BLIGHT; SEPTORIA-TRITICI BLOTCH; CORN LEAF-BLIGHT; ZEA-MAYS L; TRAIT LOCI; PREDICTION ACCURACY; WIDE ASSOCIATION; MYCOTOXIN CONTAMINATION; GENETIC ARCHITECTURE;
D O I
10.3390/ijms21249717
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Generating genomics-driven knowledge opens a way to accelerate the resistance breeding process by family or population mapping and genomic selection. Important prerequisites are large populations that are genomically analyzed by medium- to high-density marker arrays and extensive phenotyping across locations and years of the same populations. The latter is important to train a genomic model that is used to predict genomic estimated breeding values of phenotypically untested genotypes. After reviewing the specific features of quantitative resistances and the basic genomic techniques, the possibilities for genomics-assisted breeding are evaluated for six pathosystems with hemi-biotrophic fungi: Small-grain cereals/Fusarium head blight (FHB), wheat/Septoria tritici blotch (STB) and Septoria nodorum blotch (SNB), maize/Gibberella ear rot (GER) and Fusarium ear rot (FER), maize/Northern corn leaf blight (NCLB). Typically, all quantitative disease resistances are caused by hundreds of QTL scattered across the whole genome, but often available in hotspots as exemplified for NCLB resistance in maize. Because all crops are suffering from many diseases, multi-disease resistance (MDR) is an attractive aim that can be selected by specific MDR QTL. Finally, the integration of genomic data in the breeding process for introgression of genetic resources and for the improvement within elite materials is discussed.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 125 条
  • [1] Genome-based prediction of maize hybrid performance across genetic groups, testers, locations, and years
    Albrecht, Theresa
    Auinger, Hans-Juergen
    Wimmer, Valentin
    Ogutu, Joseph O.
    Knaak, Carsten
    Ouzunova, Milena
    Piepho, Hans-Peter
    Schoen, Chris-Carolin
    [J]. THEORETICAL AND APPLIED GENETICS, 2014, 127 (06) : 1375 - 1386
  • [2] [Anonymous], 1995, Wheat Rusts: An Atlas of Resistance Genes
  • [3] Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes
    Aranzana, MJ
    Kim, S
    Zhao, KY
    Bakker, E
    Horton, M
    Jakob, K
    Lister, C
    Molitor, J
    Shindo, C
    Tang, CL
    Toomajian, C
    Traw, B
    Zheng, HG
    Bergelson, J
    Dean, C
    Marjoram, P
    Nordborg, M
    [J]. PLOS GENETICS, 2005, 1 (05): : 531 - 539
  • [4] Sources of resistance and susceptibility to Septoria tritici blotch of wheat
    Arraiano, Lia S.
    Brown, James K. M.
    [J]. MOLECULAR PLANT PATHOLOGY, 2017, 18 (02) : 276 - 292
  • [5] Model training across multiple breeding cycles significantly improves genomic prediction accuracy in rye (Secale cereale L.)
    Auinger, Hans-Jurgen
    Schoenleben, Manfred
    Lehermeier, Christina
    Schmidt, Malthe
    Korzun, Viktor
    Geiger, Hartwig H.
    Piepho, Hans-Peter
    Gordillo, Andres
    Wilde, Peer
    Bauer, Eva
    Schoen, Chris-Carolin
    [J]. THEORETICAL AND APPLIED GENETICS, 2016, 129 (11) : 2043 - 2053
  • [6] Use of a Maize Advanced Intercross Line for Mapping of QTL for Northern Leaf Blight Resistance and Multiple Disease Resistance
    Balint-Kurti, Peter J.
    Yang, Junyun
    Van Esbroeck, George
    Jung, Janelle
    Smith, Margaret E.
    [J]. CROP SCIENCE, 2010, 50 (02) : 458 - 466
  • [7] Combined linkage and linkage disequilibrium QTL mapping in multiple families of maize (Zea mays L.) line crosses highlights complementarities between models based on parental haplotype and single locus polymorphism
    Bardol, N.
    Ventelon, M.
    Mangin, B.
    Jasson, S.
    Loywick, V.
    Couton, F.
    Derue, C.
    Blanchard, P.
    Charcosset, A.
    Moreau, Laurence
    [J]. THEORETICAL AND APPLIED GENETICS, 2013, 126 (11) : 2717 - 2736
  • [8] Parental selection, number of breeding populations, and size of each population in inbred development
    Bernardo, R
    [J]. THEORETICAL AND APPLIED GENETICS, 2003, 107 (07) : 1252 - 1256
  • [9] Genome-Wide Association Study for Multiple Biotic Stress Resistance in Synthetic Hexaploid Wheat
    Bhatta, Madhav
    Morgounov, Alexey
    Belamkar, Vikas
    Wegulo, Stephen N.
    Dababat, Abdelfattah A.
    Erginbas-Orakci, Gul
    El Bouhssini, Mustapha
    Gautam, Pravin
    Poland, Jesse
    Akci, Niluefer
    Demir, Lutfu
    Wanyera, Ruth
    Baenziger, P. Stephen
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (15)
  • [10] Tapping the genetic diversity of landraces in allogamous crops with doubled haploid lines: a case study from European flint maize
    Bohm, Juliane
    Schipprack, Wolfgang
    Utz, H. Friedrich
    Melchinger, Albrecht E.
    [J]. THEORETICAL AND APPLIED GENETICS, 2017, 130 (05) : 861 - 873