Effective Rheology of Two-Phase Flow in a Capillary Fiber Bundle Model

被引:0
作者
Roy, Subhadeep [1 ]
Hansen, Alex [1 ,2 ]
Sinha, Santanu [1 ,2 ]
机构
[1] Norwegian Univ Sci & Technol NTNU, Dept Phys, PoreLab, Trondheim, Norway
[2] Beijing Computat Sci Res Ctr, Beijing, Peoples R China
来源
FRONTIERS IN PHYSICS | 2019年 / 7卷
基金
中国国家自然科学基金;
关键词
two-phase flow; capillary fiber bundle model; effective rheology; non-Darcy flow at low velocity; porous media; INVASION PERCOLATION; POROUS-MEDIA;
D O I
10.3389/fphy.2019.00092
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the effective rheology of two-phase flow in a bundle of parallel capillary tubes carrying two immiscible fluids under an external pressure drop. The diameter of the tubes vary along the length which introduce capillary threshold pressures. We demonstrate through analytical calculations that a transition from a linear Darcy to a non-linear behavior occurs while decreasing the pressure drop Delta P, where the total flow rate < Q > varies with Delta P with an exponent 2 as < Q > similar to Delta P-2 for uniform threshold distribution. The exponent changes when a lower cut-off P-m is introduced in the threshold distribution and in the limit where Delta P approaches P-m, the flow rate scales as < Q > similar to (vertical bar Delta P vertical bar - P-m)(3/2). While considering threshold distribution with a power alpha, we find that the exponent gamma for the non-linear regime vary as gamma = alpha + 1 for P-m = 0 and gamma = alpha + 1/2 for P-m > 0. We provide numerical results in support of our analytical findings.
引用
收藏
页数:7
相关论文
共 26 条
  • [1] Bear J., 1998, Dynamics of Fluids in Porous Media. Civil and Mechanical Engineering
  • [2] PORE-SCALE VISCOUS FINGERING IN POROUS-MEDIA
    CHEN, JD
    WILKINSON, D
    [J]. PHYSICAL REVIEW LETTERS, 1985, 55 (18) : 1892 - 1895
  • [3] Generalization of Darcy's law for Bingham fluids in porous media: From flow-field statistics to the flow-rate regimes
    Chevalier, Thibaud
    Talon, Laurent
    [J]. PHYSICAL REVIEW E, 2015, 91 (02):
  • [4] Darcy H, 1856, un appendice relatif aux fournitures d'eau de plusieurs villes au filtrage des eaux, V1
  • [5] Dullien F. A. L., 1992, Porous Media. Fluid Transport and Pore Structure
  • [6] Hansen A, 2015, FIBER BUNDLEMODEL MO
  • [7] Relations Between Seepage Velocities in Immiscible, Incompressible Two-Phase Flow in Porous Media
    Hansen, Alex
    Sinha, Santanu
    Bedeaux, Dick
    Kjelstrup, Signe
    Gjennestad, Magnus Aa.
    Vassvik, Morten
    [J]. TRANSPORT IN POROUS MEDIA, 2018, 125 (03) : 565 - 587
  • [8] INVASION PERCOLATION IN AN ETCHED NETWORK - MEASUREMENT OF A FRACTAL DIMENSION
    LENORMAND, R
    ZARCONE, C
    [J]. PHYSICAL REVIEW LETTERS, 1985, 54 (20) : 2226 - 2229
  • [9] NUMERICAL-MODELS AND EXPERIMENTS ON IMMISCIBLE DISPLACEMENTS IN POROUS-MEDIA
    LENORMAND, R
    TOUBOUL, E
    ZARCONE, C
    [J]. JOURNAL OF FLUID MECHANICS, 1988, 189 : 165 - 187
  • [10] Growth activity during fingering in a porous Hele-Shaw cell
    Løvoll, Grunde
    Méheust, Yves
    Toussaint, Renaud
    Schmittbuhl, Jean
    Måløy, Knut Jørgen
    [J]. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2004, 70 (2 2): : 026301 - 1