Ni-Substituted Sr(Ti,Fe)O3 SOFC Anodes: Achieving High Performance via Metal Alloy Nanoparticle Exsolution

被引:275
作者
Zhu, Tenglong [1 ,4 ]
Troiani, Horacio E. [2 ]
Mogni, Liliana, V [2 ]
Han, Minfang [3 ]
Barnett, Scott A. [1 ]
机构
[1] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[2] Consejo Nacl Invest Cient & Tecn, CNEA, Ctr Atom Bariloche, Ave Bustillo 9500, RA-8400 San Carlos De Bariloche, Argentina
[3] Tsinghua Univ, Dept Energy & Power Engn, Beijing 100084, Peoples R China
[4] Nanjing Univ Sci & Technol, Nanjing, Jiangsu, Peoples R China
关键词
OXIDE FUEL-CELL; IN-SITU GROWTH; FE-NI; PEROVSKITE; PRECIPITATION; RESISTANCE; PARTICLES; EVOLUTION; IMPEDANCE; CATALYST;
D O I
10.1016/j.joule.2018.02.006
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrically conducting oxides have been proposed as alternatives to Ni-based cermet anodes for solid oxide fuel cells (SOFCs) to overcome issues such as coking and impurity poisoning, but their electrochemical performance is typically inferior to that of Ni-based cermets. Here we show that a new oxide composition, Sr-0.95(Ti0.3Fe0.63Ni0.07)O3-delta, yields anode polarization resistance competitive with Ni cermets, and substantially better than that of the corresponding Ni-free compound, SrTi0.3Fe0.7O3-delta. Exposure to fuel results in exso-lution and nucleation of Ni0.5Fe0.5 nanoparticles uniformly dispersed on the Ni-substituted perovskite surface, whereas no nanoparticles are observed on SrTi0.3Fe0.7O3-delta. A general thermodynamic model is developed that quantitatively predicts exsolved nanoparticle composition. The reduction in anode polarization resistance by the nanoparticles, by as much as 4 times, is most pronounced at cell operating temperatures below 800 degrees C and low H-2 partial pressures, suggesting that the nanoparticles improve performance by promoting H-2 adsorption.
引用
收藏
页码:478 / 496
页数:19
相关论文
共 58 条
[1]   A support layer for solid oxide fuel cells [J].
Ahn, Kipyung ;
Jung, Sukwon ;
Vohs, John M. ;
Gorte, Raymond J. .
CERAMICS INTERNATIONAL, 2007, 33 (06) :1065-1070
[2]  
[Anonymous], FRONT ENERGY RES
[3]   Advanced anodes for high-temperature fuel cells [J].
Atkinson, A ;
Barnett, S ;
Gorte, RJ ;
Irvine, JTS ;
Mcevoy, AJ ;
Mogensen, M ;
Singhal, SC ;
Vohs, J .
NATURE MATERIALS, 2004, 3 (01) :17-27
[4]   A new computational approach for SOFC impedance from detailed electrochemical reaction-diffusion models [J].
Bessler, WG .
SOLID STATE IONICS, 2005, 176 (11-12) :997-1011
[5]   Pd-substituted (La,Sr)CrO3-δ-Ce0.9Gd0.1O2-δ solid oxide fuel cell anodes exhibiting regenerative behavior [J].
Bierschenk, David M. ;
Potter-Nelson, Elizabeth ;
Hoel, Cathleen ;
Liao, Yougui ;
Marks, Laurence ;
Poeppelmeier, Kenneth R. ;
Barnett, Scott A. .
JOURNAL OF POWER SOURCES, 2011, 196 (06) :3089-3094
[6]  
Botti JJ, 2003, ELEC SOC S, V2003, P16
[7]   Studies on the reorganization of extended defects with increasing n in the perovskite-based La4Srn-4TinO3n+2 series [J].
Canales-Vázquez, J ;
Smith, MJ ;
Irvine, JTS ;
Zhou, WZ .
ADVANCED FUNCTIONAL MATERIALS, 2005, 15 (06) :1000-1008
[8]   ADAPTATION OF AN ELECTROCHEMICAL SYSTEM FOR MEASUREMENT AND REGULATION OF OXYGEN PARTIAL-PRESSURE TO A SYMMETRICAL THERMOGRAVIMETRIC ANALYSIS SYSTEM DEVELOPED USING A CAHN 1000 ELECTROBALANCE [J].
CANEIRO, A ;
BAVDAZ, P ;
FOULETIER, J ;
ABRIATA, JP .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1982, 53 (07) :1072-1075
[9]   Fe-substituted SrTiO3-δ-Ce0.9Gd0.1O2 composite anodes for solid oxide fuel cells [J].
Cho, Sungmee ;
Fowler, Daniel E. ;
Miller, Elizabeth C. ;
Cronin, J. Scott ;
Poeppelmeier, Kenneth R. ;
Barnett, Scott A. .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (06) :1850-1857
[10]   High-Performance Anode Material Sr2FeMo0.65Ni0.35O6-δ with In Situ Exsolved Nanoparticle Catalyst [J].
Du, Zhihong ;
Zhao, Hailei ;
Yi, Sha ;
Xia, Qing ;
Gong, Yue ;
Zhang, Yang ;
Cheng, Xing ;
Li, Yan ;
Gu, Lin ;
Swierczek, Konrad .
ACS NANO, 2016, 10 (09) :8660-8669