Secondary Organic Aerosol Formation over Coastal Ocean: Inferences from Atmospheric Water-Soluble Low Molecular Weight Organic Compounds

被引:57
作者
Bikkina, Srinivas [1 ,2 ,4 ]
Kawamura, Kimitaka [1 ,3 ]
Sarin, Manmohan [2 ]
机构
[1] Hokkaido Univ, Inst Low Temp Sci, Sapporo, Hokkaido 0600819, Japan
[2] Phys Res Lab, Ahmadabad 380009, Gujarat, India
[3] Chubu Univ, Chubu Inst Adv Studies, Kasugai, Aichi 4878501, Japan
[4] Stockholm Univ, Dept Environm Sci & Analyt Chem, S-1410691 Stockholm, Sweden
基金
日本学术振兴会;
关键词
OH RADICAL OXIDATION; INDO-GANGETIC PLAIN; DICARBOXYLIC-ACIDS; SOA FORMATION; BENGAL IMPACT; LIQUID WATER; METHYLGLYOXAL; GLYOXAL; CARBON; PHOTOOXIDATION;
D O I
10.1021/acs.est.6b05986
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A lack of consensus on the distributions and formation pathways of secondary organic aerosols (SOA) over oceanic regions downwind of pollution sources limits our ability to assess their climate impact globally. As a case study, we report here on water-soluble SOA components such as dicarboxylic acids, oxocarboxylic acids, and alpha-dicarbonyls in the continental outflows from the Indo-Gangetic Plain (IGP) and Southeast Asia (SEA) to the Bay of Bengal. Oxalic acid (C-2) is the dominant species followed by succinic (C-4) and glyoxylic acids (omega C-2) in the outflow. Nonsea-salt 5042- also dominates (-70%) total water-soluble inorganic constituents and correlates well with aerosol liquid water content (LWC) and C-2, indicating their production through aqueous phase photochemical reactions. Furthermore, mass ratios of dicarboxylic acids (C-2/C-4, C-2/omega C-2), and their relative abundances in water-soluble organic carbon and total organic carbon are quite similar between the two continental (IGP and SEA) outflows, indicating the formation of SOA through aqueous phase photochemical reactions in LWC-enriched aerosols, largely controlled by anthropogenic SO42-.
引用
收藏
页码:4347 / 4357
页数:11
相关论文
共 75 条
[11]   An exploration of aqueous oxalic acid production in the coastal marine atmosphere [J].
Crahan, KK ;
Hegg, D ;
Covert, DS ;
Jonsson, H .
ATMOSPHERIC ENVIRONMENT, 2004, 38 (23) :3757-3764
[12]   Secondary Organic Aerosol Formation by Self-Reactions of Methylglyoxal and Glyoxal in Evaporating Droplets [J].
De Haan, David O. ;
Corrigan, Ashley L. ;
Tolbert, Margaret A. ;
Jimenez, Jose L. ;
Wood, Stephanie E. ;
Turley, Jacob J. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2009, 43 (21) :8184-8190
[13]   Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies [J].
Ervens, B. ;
Turpin, B. J. ;
Weber, R. J. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (21) :11069-11102
[14]   Secondary organic aerosol yields from cloud-processing of isoprene oxidation products [J].
Ervens, Barbara ;
Carlton, Annmarie G. ;
Turpin, Barbara J. ;
Altieri, Katye E. ;
Kreidenweis, Sonia M. ;
Feingold, Graham .
GEOPHYSICAL RESEARCH LETTERS, 2008, 35 (02)
[15]   Role of Aerosol Liquid Water in Secondary Organic Aerosol Formation from Volatile Organic Compounds [J].
Faust, Jennifer A. ;
Wong, Jenny P. S. ;
Lee, Alex K. Y. ;
Abbatt, Jonathan P. D. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2017, 51 (03) :1405-1413
[16]   ISORROPIA II:: a computationally efficient thermodynamic equilibrium model for K+-Ca2+-Mg2+-Nh4+-Na+-SO42--NO3--Cl--H2O aerosols [J].
Fountoukis, C. ;
Nenes, A. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2007, 7 (17) :4639-4659
[17]   Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols [J].
Fu, Tzung-May ;
Jacob, Daniel J. ;
Wittrock, Folkard ;
Burrows, John P. ;
Vrekoussis, Mihalis ;
Henze, Daven K. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2008, 113 (D15)
[18]   Aqueous-phase reactive uptake of dicarbonyls as a source of organic aerosol over eastern North America [J].
Fu, Tzung-May ;
Jacob, Daniel J. ;
Heald, Colette L. .
ATMOSPHERIC ENVIRONMENT, 2009, 43 (10) :1814-1822
[19]   Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change [J].
Fuzzi, S. ;
Andreae, M. O. ;
Huebert, B. J. ;
Kulmala, M. ;
Bond, T. C. ;
Boy, M. ;
Doherty, S. J. ;
Guenther, A. ;
Kanakidou, M. ;
Kawamura, K. ;
Kerminen, V. -M. ;
Lohmann, U. ;
Russell, L. M. ;
Poeschl, U. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2006, 6 :2017-2038
[20]   Glyoxal uptake on ammonium sulphate seed aerosol: reaction products and reversibility of uptake under dark and irradiated conditions [J].
Galloway, M. M. ;
Chhabra, P. S. ;
Chan, A. W. H. ;
Surratt, J. D. ;
Flagan, R. C. ;
Seinfeld, J. H. ;
Keutsch, F. N. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (10) :3331-3345