Fisher waves in an epidemic model

被引:135
作者
Zhao, XQ [1 ]
Wang, WD
机构
[1] Mem Univ Newfoundland, Dept Math & Stat, St Johns, NF A1C 5S7, Canada
[2] SW Normal Univ, Dept Math, Chongqing 400715, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2004年 / 4卷 / 04期
关键词
epidemic model; traveling waves; upper and lower solutions; monotone iterations;
D O I
10.3934/dcdsb.2004.4.1117
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence of Fisher type monotone traveling waves and the minimal wave speed are established for a reaction-diffusion system modeling man-environment-man epidemics via the method of upper and lower solutions as applied to a reduced second order ordinary differential equation with infinite time delay.
引用
收藏
页码:1117 / 1128
页数:12
相关论文
共 20 条
[11]   TRAVELING FRONTS IN NONLINEAR DIFFUSION EQUATIONS [J].
HADELER, KP ;
ROTHE, F .
JOURNAL OF MATHEMATICAL BIOLOGY, 1975, 2 (03) :251-263
[12]  
HADELER KP, 1999, DIFF EQUAT, V21, P251
[13]   Traveling Wave Fronts of Reaction-Diffusion Systems with Delay [J].
Jianhong Wu ;
Xingfu Zou .
Journal of Dynamics and Differential Equations, 2001, 13 (3) :651-687
[14]   Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem [J].
Ma, SW .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 171 (02) :294-314
[15]  
Murray J.D, 1989, Mathematical Biology, V19
[16]  
SCHAAF KW, 1987, T AM MATH SOC, V302, P587
[17]   Global asymptotic stability of traveling waves in delayed reaction-diffusion equations [J].
Smith, HL ;
Zhao, XQ .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2000, 31 (03) :514-534
[18]  
VOLPERT AI, 1994, MATH MONOGRAPHYS, V140
[19]  
Wu J., 1996, THEORY APPL PARTIAL
[20]  
Zhao X-Q., 1996, Can. Appl. Math. Q, V4, P421