Fisher waves in an epidemic model

被引:135
作者
Zhao, XQ [1 ]
Wang, WD
机构
[1] Mem Univ Newfoundland, Dept Math & Stat, St Johns, NF A1C 5S7, Canada
[2] SW Normal Univ, Dept Math, Chongqing 400715, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2004年 / 4卷 / 04期
关键词
epidemic model; traveling waves; upper and lower solutions; monotone iterations;
D O I
10.3934/dcdsb.2004.4.1117
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence of Fisher type monotone traveling waves and the minimal wave speed are established for a reaction-diffusion system modeling man-environment-man epidemics via the method of upper and lower solutions as applied to a reduced second order ordinary differential equation with infinite time delay.
引用
收藏
页码:1117 / 1128
页数:12
相关论文
共 20 条
[1]  
Aronson D. G., 1975, LECT NOTES MATH, V446, P5
[2]   DETERMINISTIC EPIDEMIC WAVES [J].
ATKINSON, C ;
REUTER, GEH .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1976, 80 (SEP) :315-330
[3]   CONVERGENCE TO EQUILIBRIUM STATES FOR A REACTION-DIFFUSION SYSTEM MODELING THE SPATIAL SPREAD OF A CLASS OF BACTERIAL AND VIRAL DISEASES [J].
CAPASSO, V ;
MADDALENA, L .
JOURNAL OF MATHEMATICAL BIOLOGY, 1981, 13 (02) :173-184
[4]   SADDLE-POINT BEHAVIOR FOR A REACTION-DIFFUSION SYSTEM - APPLICATION TO A CLASS OF EPIDEMIC MODELS [J].
CAPASSO, V ;
MADDALENA, L .
MATHEMATICS AND COMPUTERS IN SIMULATION, 1982, 24 (06) :540-547
[5]   Analysis of a reaction-diffusion system modeling man-environment-man epidemics [J].
Capasso, V ;
Wilson, RE .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1997, 57 (02) :327-346
[6]  
Capasso V., 1993, MATH STRUCTURES EPID, V97
[7]  
Coddington N., 1955, THEORY ORDINARY DIFF
[8]   THRESHOLDS AND TRAVELING WAVES FOR THE GEOGRAPHICAL SPREAD OF INFECTION [J].
DIEKMANN, O .
JOURNAL OF MATHEMATICAL BIOLOGY, 1978, 6 (02) :109-130
[9]  
Fife PC, 1979, Mathematical Aspects of Reacting and Diffusing Systems, V28
[10]   Travelling front solutions of a nonlocal Fisher equation [J].
Gourley, SA .
JOURNAL OF MATHEMATICAL BIOLOGY, 2000, 41 (03) :272-284