Chemical Doping Effects on CVD-Grown Multilayer MoSe2 Transistor

被引:29
作者
Yoo, Hocheon [1 ]
Hong, Seongin [2 ]
Moon, Hyunseong [2 ]
On, Sungmin [1 ]
Ahn, Hyungju [3 ]
Lee, Han-Koo [3 ]
Kim, Sunkook [2 ]
Hong, Young Ki [2 ]
Kim, Jae-Joon [1 ]
机构
[1] Pohang Univ Sci & Technol, Dept Creat IT Engn, Pohang 790784, South Korea
[2] Sungkyunkwan Univ, Multifunct Nano Bio Elect Lab, Suwon 440746, South Korea
[3] Pohang Accelerator Lab, Pohang 790784, South Korea
基金
新加坡国家研究基金会;
关键词
chemical doping; hybrid devices; MoSe2; multilayer transition metal dichalcogenides (TMDs); phototransistors; LARGE-AREA; HIGH-MOBILITY; LAYER MOSE2; MONOLAYER; DISELENIDE; FILMS; MOO3; POLYMERS; SURFACE; DONOR;
D O I
10.1002/aelm.201700639
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Multilayer transition metal dichalcogenides (TMDs) potentially provide opportunities for large-area electronics, including flexible displays and wearable sensors. However, most TMDs suffer from a Schottky barrier (SB) and nonuniform defects, which severely limit their electrical performances. Here, a novel chemical doping scheme is presented using poly-(diketopyrrolopyrrole-terthiophene) (PDPP3T) to compensate the defects and SB of multilayer molybdenum diselenide (MoSe2), exhibiting greatly enhanced electrical characteristics, including on-current (approximate to 2000-fold higher) and photoresponsivity (approximate to 10-fold larger) over the baseline MoSe2 device. Based on comprehensive analysis using X-ray photoelectron spectroscopy, grazing incidence wide-angle X-ray diffraction, atomic force microscopy, and near-edge X-ray absorption of fine structure, it is shown that two mechanisms (dipole-induced and charge-transfer doping effects) account for such enhancements in the multilayer MoSe2 device. The methodical generality of the strong n-doping behavior of multilayer MoSe2 is further demonstrated by applying thiophene instead of PDPP3T.
引用
收藏
页数:10
相关论文
共 40 条
[1]   Poly(diketopyrrolopyrrole-terthiophene) for Ambipolar Logic and Photovoltaics [J].
Bijleveld, Johan C. ;
Zoombelt, Arjan P. ;
Mathijssen, Simon G. J. ;
Wienk, Martijn M. ;
Turbiez, Mathieu ;
de Leeuw, Dago M. ;
Janssen, Rene A. J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (46) :16616-+
[2]  
Buckley A, 2013, WOODH PUB SER ELECT, P459, DOI 10.1533/9780857098948.3.459
[3]   Regular hexagonal MoS2 microflakes grown from MoO3 precursor [J].
Cai, G. M. ;
Jian, J. K. ;
Chen, X. L. ;
Lei, M. ;
Wang, W. Y. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2007, 89 (03) :783-788
[4]   Monolayer MoSe2 Grown by Chemical Vapor Deposition for Fast Photodetection [J].
Chang, Yung-Huang ;
Zhang, Wenjing ;
Zhu, Yihan ;
Han, Yu ;
Pu, Jiang ;
Chang, Jan-Kai ;
Hsu, Wei-Ting ;
Huang, Jing-Kai ;
Hsu, Chang-Lung ;
Chiu, Ming-Hui ;
Takenobu, Taishi ;
Li, Henan ;
Wu, Chih-I ;
Chang, Wen-Hao ;
Wee, Andrew Thye Shen ;
Li, Lain-Jong .
ACS NANO, 2014, 8 (08) :8582-8590
[5]  
Chhowalla M, 2013, NAT CHEM, V5, P263, DOI [10.1038/NCHEM.1589, 10.1038/nchem.1589]
[6]   High-Detectivity Multilayer MoS2 Phototransistors with Spectral Response from Ultraviolet to Infrared [J].
Choi, Woong ;
Cho, Mi Yeon ;
Konar, Aniruddha ;
Lee, Jong Hak ;
Cha, Gi-Beom ;
Hong, Soon Cheol ;
Kim, Sangsig ;
Kim, Jeongyong ;
Jena, Debdeep ;
Joo, Jinsoo ;
Kim, Sunkook .
ADVANCED MATERIALS, 2012, 24 (43) :5832-5836
[7]  
Crawford GP, 2005, WILEY-SID SER DISPL, P1, DOI 10.1002/0470870508
[8]   Optically active charge transfer in hybrids of Alq3 nanoparticles and MoS2 monolayer [J].
Ghimire, Ganesh ;
Dhakal, Krishna P. ;
Neupane, Guru P. ;
Jo, Seong Gi ;
Kim, Hyun ;
Seo, Changwon ;
Lee, Young Hee ;
Joo, Jinsoo ;
Kim, Jeongyong .
NANOTECHNOLOGY, 2017, 28 (18)
[9]   Photo-Electrical Properties of Trilayer MoSe2 Nanoflakes [J].
Hang, Yang ;
Li, Qi ;
Luo, Wei ;
He, Yanlan ;
Zhang, Xueao ;
Peng, Gang .
NANO, 2016, 11 (07)
[10]   Intrinsic Surface Dipoles Control the Energy Levels of Conjugated Polymers [J].
Heimel, Georg ;
Salzmann, Ingo ;
Duhm, Steffen ;
Rabe, Juergen P. ;
Koch, Norbert .
ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (24) :3874-3879