General linear independence of a class of multiplicative functions

被引:4
作者
Molteni, G [1 ]
机构
[1] Univ Milan, Dipartimento Matemat, I-20133 Milan, Italy
关键词
11M41.;
D O I
10.1007/s00013-004-4867-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The notion of global non-equivalence of a set of multiplicative functions is introduced. The linear independence of a set of globally inequivalent multiplicative functions with respect to the ring C[r] where r is a slowly varying function is proved. Applications to families of Artin L-functions are given.
引用
收藏
页码:27 / 40
页数:14
相关论文
共 9 条
[1]  
BERKOVICH YG, 1999, T MATH MONOGRAPHS, V181
[2]   REGULARLY VARYING SEQUENCES [J].
GALAMBOS, J ;
SENETA, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 41 (01) :110-116
[3]  
Goldstein L.J., 1971, Analytic Number Theory
[4]  
Isaacs I.M., 1994, CHARACTER THEORY FIN
[5]  
Kaczorowski J., 1999, C R MATH REP ACAD SC, V21, P28
[6]  
KACZOROWSKI J, IN PRESS LINEAR INDE
[7]  
Karamata J., 1930, Mathematica (Cluj), V4, P38
[8]  
Nicolae F, 2001, J REINE ANGEW MATH, V539, P179
[9]  
Seneta E., 1976, LNM, V508