Implementation of a triple Gaussian beam model with subdivision and redefinition against density heterogeneities in treatment planning for scanned carbon-ion radiotherapy

被引:55
作者
Inaniwa, T. [1 ]
Kanematsu, N. [1 ]
Hara, Y. [1 ]
Furukawa, T. [1 ]
Fukahori, M. [1 ]
Nakao, M. [1 ]
Shirai, T. [1 ]
机构
[1] Natl Inst Radiol Sci, Res Ctr Charged Particle Therapy, Med Phys Res Program, Inage Ku, Chiba 2638555, Japan
基金
日本学术振兴会;
关键词
treatment planning; carbon-ion radiotherapy; pencil beam algorithm; MODULATED PROTON THERAPY; MICRODOSIMETRIC KINETIC-MODEL; DOSE DISTRIBUTIONS; PARTICLE THERAPY; MULTIPLE-SCATTERING; PENCIL BEAMS; ALGORITHM; SYSTEM; OPTIMIZATION; UNCERTAINTIES;
D O I
10.1088/0031-9155/59/18/5361
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Challenging issues in treatment planning for scanned carbon-ion (C-ion) therapy are (i) accurate calculation of dose distribution, including the contribution of large angle-scattered fragments, (ii) reduction in the memory space required to store the dose kernel of individual pencil beams and (iii) shortening of computation time for dose optimization and calculation. To calculate the dose contribution from fragments, we modeled the transverse dose profile of the scanned C-ion beam with the superposition of three Gaussian distributions. The development of pencil beams belonging to the first Gaussian component was calculated analytically based on the Fermi-Eyges theory, while those belonging to the second and third components were transported empirically using the measured beam widths in a water phantom. To reduce the memory space for the kernels, we stored doses only in the regions of interest considered in the dose optimization. For the final dose calculation within the patient's whole body, we applied a pencil beam redefinition algorithm. With these techniques, the triple Gaussian beam model can be applied not only to final dose calculation but also to dose optimization in treatment planning for scanned C-ion therapy. To verify the model, we made treatment plans for a homogeneous water phantom and a heterogeneous head phantom. The planned doses agreed with the measurements within +/- 2% of the target dose in both phantoms, except for the doses at the periphery of the target with a high dose gradient. To estimate the memory space and computation time reduction with these techniques, we made a treatment plan for a bone sarcoma case with a target volume of 1.94 l. The memory space for the kernel and the computation time for final dose calculation were reduced to 1/22 and 1/100 of those without the techniques, respectively. Computation with the triple Gaussian beam model using the proposed techniques is rapid, accurate and applicable to dose optimization and calculation in treatment planning for scanned C-ion therapy.
引用
收藏
页码:5361 / 5386
页数:26
相关论文
共 45 条
[1]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[2]  
Aso T, 2007, IEEE NUCL SCI CONF R, P2564
[3]   Electron pencil-beam redefinition algorithm dose calculations in the presence of heterogeneities [J].
Boyd, RA ;
Hogstrom, KR ;
Starkschall, G .
MEDICAL PHYSICS, 2001, 28 (10) :2096-2104
[4]   Modeling skin collimation using the electron pencil beam redefinition algorithm [J].
Chi, PCM ;
Hogstrom, KR ;
Starkschall, G ;
Antolak, JA ;
Boyd, RA .
MEDICAL PHYSICS, 2005, 32 (11) :3409-3418
[5]   Application of the pencil-beam redefinition algorithm in heterogeneous media for proton beam therapy [J].
Egashira, Y. ;
Nishio, T. ;
Hotta, K. ;
Kohno, R. ;
Uesaka, M. .
PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (04) :1169-1184
[6]   Experimental evaluation of a spatial resampling technique to improve the accuracy of pencil-beam dose calculation in proton therapy [J].
Egashira, Yusuke ;
Nishio, Teiji ;
Matsuura, Taeko ;
Kameoka, Satoru ;
Uesaka, Mitsuru .
MEDICAL PHYSICS, 2012, 39 (07) :4104-4114
[7]  
Eyges L, 1948, PHYS REV, V74, P467
[8]   Patient-specific QA and delivery verification of scanned ion beam at NIRS-HIMAC [J].
Furukawa, Takuji ;
Inaniwa, Taku ;
Hara, Yousuke ;
Mizushima, Kota ;
Shirai, Toshiyuki ;
Noda, Koji .
MEDICAL PHYSICS, 2013, 40 (12)
[9]   Performance of the NIRS fast scanning system for heavy-ion radiotherapy [J].
Furukawa, Takuji ;
Inaniwa, Taku ;
Sato, Shinji ;
Shirai, Toshiyuki ;
Takei, Yuka ;
Takeshita, Eri ;
Mizushima, Kota ;
Iwata, Yoshiyuki ;
Himukai, Takeshi ;
Mori, Shinichiro ;
Fukuda, Shigekazu ;
Minohara, Shinichi ;
Takada, Eiichi ;
Murakami, Takeshi ;
Noda, Koji .
MEDICAL PHYSICS, 2010, 37 (11) :5672-5682
[10]   The heidelberg ion therapy center [J].
Haberer, T ;
Debus, J ;
Eickhoff, H ;
Jäkel, O ;
Schulz-Ertner, D ;
Weber, U .
RADIOTHERAPY AND ONCOLOGY, 2004, 73 :S186-S190