Scaling Open-Vocabulary Image Segmentation with Image-Level Labels

被引:190
作者
Ghiasi, Golnaz [1 ]
Gu, Xiuye [1 ]
Cui, Yin [1 ,2 ]
Lin, Tsung-Yi [1 ,2 ]
机构
[1] Google Res, Mountain View, CA 94043 USA
[2] Google, Mountain View, CA USA
来源
COMPUTER VISION, ECCV 2022, PT XXXVI | 2022年 / 13696卷
关键词
D O I
10.1007/978-3-031-20059-5_31
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We design an open-vocabulary image segmentation model to organize an image into meaningful regions indicated by arbitrary texts. Recent works (CLIP and ALIGN), despite attaining impressive open-vocabulary classification accuracy with image-level caption labels, are unable to segment visual concepts with pixels. We argue that these models miss an important step of visual grouping, which organizes pixels into groups before learning visual-semantic alignments. We propose OpenSeg to address the above issue while still making use of scalable image-level supervision of captions. First, it learns to propose segmentation masks for possible organizations. Then it learns visual-semantic alignments by aligning each word in a caption to one or a few predicted masks. We find the mask representations are the key to support learning image segmentation from captions, making it possible to scale up the dataset and vocabulary sizes. OpenSeg significantly outperforms the recent open-vocabulary method of LSeg by +19.9 mIoU on PASCAL dataset, thanks to its scalability.
引用
收藏
页码:540 / 557
页数:18
相关论文
共 58 条
[1]  
Agarwal S, 2021, Arxiv, DOI arXiv:2108.02818
[2]  
[Anonymous], 2010, International journal of computer vision, DOI DOI 10.1007/s11263-009-0275-4
[3]   Multiscale Combinatorial Grouping [J].
Arbelaez, Pablo ;
Pont-Tuset, Jordi ;
Barron, Jonathan T. ;
Marques, Ferran ;
Malik, Jitendra .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :328-335
[4]   Contour Detection and Hierarchical Image Segmentation [J].
Arbelaez, Pablo ;
Maire, Michael ;
Fowlkes, Charless ;
Malik, Jitendra .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (05) :898-916
[5]   Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation [J].
Baek, Donghyeon ;
Oh, Youngmin ;
Ham, Bumsub .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :9516-9525
[6]  
Bowen C., 2021, NeurIPS
[7]   COCO-Stuff: Thing and Stuff Classes in Context [J].
Caesar, Holger ;
Uijlings, Jasper ;
Ferrari, Vittorio .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :1209-1218
[8]   End-to-End Object Detection with Transformers [J].
Carion, Nicolas ;
Massa, Francisco ;
Synnaeve, Gabriel ;
Usunier, Nicolas ;
Kirillov, Alexander ;
Zagoruyko, Sergey .
COMPUTER VISION - ECCV 2020, PT I, 2020, 12346 :213-229
[9]  
Chen XL, 2015, Arxiv, DOI arXiv:1504.00325
[10]  
Cheng B., 2021, arXiv, DOI [10.48550/arXiv.2107.06278, DOI 10.48550/ARXIV.2107.06278]