New conditions on fuzzy coupled coincidence fixed point theorem

被引:0
作者
Wang, Shenghua [1 ]
Luo, Ting [1 ]
Ciric, Ljubomir [2 ]
Alsulami, Saud M. [3 ]
机构
[1] North China Elect Power Univ, Sch Math & Phys, Baoding 071003, Peoples R China
[2] Univ Belgrade, Fac Mech Engn, Belgrade 11000, Serbia
[3] King Abdulaziz Univ, Dept Math, Jeddah 21323, Saudi Arabia
关键词
fuzzy metric space; contraction mapping; coincidence fixed point; partial order; METRIC-SPACES; MAPPINGS;
D O I
10.1186/1687-1812-2014-153
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently, Choudhury et al. proved a coupled coincidence point theorem in a partial order fuzzy metric space. In this paper, we give a new version of the result of Choudhury et al. by removing some restrictions. In our result, the mappings are not required to be compatible, continuous or commutable, and the t-norm is not required to be of Hadzic-type. Finally, two examples are presented to illustrate the main result of this paper.
引用
收藏
页数:12
相关论文
共 22 条
[1]   Fixed point theorems in partially ordered metric spaces and applications [J].
Bhaskar, T. Gnana ;
Lakshmikantham, V. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 65 (07) :1379-1393
[2]   Coupled coincidence point results for compatible mappings in partially ordered fuzzy metric spaces [J].
Choudhury, Binayak S. ;
Das, Krishnapada ;
Das, Pradyut .
FUZZY SETS AND SYSTEMS, 2013, 222 :84-97
[3]   FUZZY PSEUDO-METRIC SPACES [J].
DENG, Z .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1982, 86 (01) :74-95
[4]  
Edelstein M., 1962, J. London Math. Soc, V37, P74, DOI [10.1112/jlms/s1-37.1.74, DOI 10.1112/JLMS/S1-37.1.74]
[5]   METRIC SPACES IN FUZZY SET-THEORY [J].
ERCEG, MA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1979, 69 (01) :205-230
[6]   ON FIXED-POINT THEOREMS IN FUZZY METRIC-SPACES [J].
FANG, JX .
FUZZY SETS AND SYSTEMS, 1992, 46 (01) :107-113
[7]   ON SOME RESULTS IN FUZZY METRIC-SPACES [J].
GEORGE, A ;
VEERAMANI, P .
FUZZY SETS AND SYSTEMS, 1994, 64 (03) :395-399
[8]   On some results of analysis for fuzzy metric spaces [J].
George, A ;
Veeramani, P .
FUZZY SETS AND SYSTEMS, 1997, 90 (03) :365-368
[9]   FIXED-POINTS IN FUZZY METRIC-SPACES [J].
GRABIEC, M .
FUZZY SETS AND SYSTEMS, 1988, 27 (03) :385-389
[10]   On fixed-point theorems in fuzzy metric spaces [J].
Gregori, V ;
Sapena, A .
FUZZY SETS AND SYSTEMS, 2002, 125 (02) :245-252