LAYER STRUCTURE AND THE GALERKIN FINITE ELEMENT METHOD FOR A SYSTEM OF WEAKLY COUPLED SINGULARLY PERTURBED CONVECTION-DIFFUSION EQUATIONS WITH MULTIPLE SCALES

被引:4
作者
Roos, Hans-Goerg [1 ]
Schopf, Martin [1 ]
机构
[1] Tech Univ Dresden, D-01062 Dresden, Germany
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2015年 / 49卷 / 05期
关键词
Convection-diffusion; graded mesh; Shishkin mesh; singular perturbation; system of differential equations; uniform convergence; NUMERICAL-METHOD; APPROXIMATION; SCHEME;
D O I
10.1051/m2an/2015027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a system of weakly coupled singularly perturbed convection-diffusion equations with multiple scales. Based on sharp estimates for first order derivatives, Linss [T. Linss, Computing 79 (2007) 23-32.] analyzed the upwind finite-difference method on a Shishkin mesh. We derive such sharp bounds for second order derivatives which show that the coupling generates additional weak layers. Finally, we prove the first robust convergence result for the Galerkin finite element method for this class of problems on modified Shishkin meshes introducing a mesh grading to cope with the weak layers. Numerical experiments support our theory.
引用
收藏
页码:1525 / 1547
页数:23
相关论文
共 21 条