Akt-dependent Activation of mTORC1 Complex Involves Phosphorylation of mTOR (Mammalian Target of Rapamycin) by IκB Kinase α (IKKα)

被引:112
作者
Dan, Han C. [1 ,4 ]
Ebbs, Aaron [1 ]
Pasparakis, Manolis [2 ]
Van Dyke, Terry [3 ]
Basseres, Daniela S. [1 ]
Baldwin, Albert S. [1 ]
机构
[1] Univ N Carolina, Lineberger Comprehens Canc Ctr, Sch Med, Chapel Hill, NC 27599 USA
[2] Univ Cologne, Inst Genet, Cologne, Germany
[3] NCI, Mouse Canc Genet Program, NIH, Frederick, MD 21702 USA
[4] Univ Maryland, Sch Med, Marlene & Stewart Greenebaum Canc Ctr, Baltimore, MD 21201 USA
基金
美国国家卫生研究院;
关键词
CELL-GROWTH; DOMAIN PHOSPHORYLATION; FEEDBACK INHIBITION; GENETIC-ANALYSIS; CANCER; PTEN; RHEB; TUMORIGENESIS; SUPPRESSION; BETA;
D O I
10.1074/jbc.M114.554881
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The serine/threonine protein kinase Akt promotes cell survival, growth, and proliferation through phosphorylation of different downstream substrates. A key effector of Akt is the mammalian target of rapamycin (mTOR). Akt is known to stimulate mTORC1 activity through phosphorylation of tuberous sclerosis complex 2 (TSC2) and PRAS40, both negative regulators of mTOR activity. We previously reported that I kappa B kinase alpha (IKK alpha), a component of the kinase complex that leads to NF-kappa B activation, plays an important role in promoting mTORC1 activity downstream of activated Akt. Here, we demonstrate IKK alpha-dependent regulation of mTORC1 using multiple PTEN null cancer cell lines and an animal model with deletion of IKK alpha. Importantly, IKK alpha is shown to phosphorylate mTOR at serine 1415 in a manner dependent on Akt to promote mTORC1 activity. These results demonstrate that IKK alpha is an effector of Akt in promoting mTORC1 activity.
引用
收藏
页码:25227 / 25240
页数:14
相关论文
共 58 条
  • [21] NF-κB, the first quarter-century: remarkable progress and outstanding questions
    Hayden, Matthew S.
    Ghosh, Sankar
    [J]. GENES & DEVELOPMENT, 2012, 26 (03) : 203 - 234
  • [22] mTOR couples cellular nutrient sensing to organismal metabolic homeostasis
    Howell, Jessica J.
    Manning, Brendan D.
    [J]. TRENDS IN ENDOCRINOLOGY AND METABOLISM, 2011, 22 (03) : 94 - 102
  • [23] IκB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a
    Hu, MCT
    Lee, DF
    Xia, WY
    Golfman, LS
    Fu, OY
    Yang, JY
    Zou, YY
    Bao, SL
    Hanada, N
    Saso, H
    Kobayashi, R
    Hung, MC
    [J]. CELL, 2004, 117 (02) : 225 - 237
  • [24] Phosphorylation of CBP by IKKα promotes cell growth by switching the binding preference of CBP from p53 to NF-κB
    Huang, Wei-Chien
    Ju, Tsai-Kai
    Hung, Mien-Chie
    Chen, Ching-Chow
    [J]. MOLECULAR CELL, 2007, 26 (01) : 75 - 87
  • [25] IκB kinase β phosphorylates the K63 deubiquitinase A20 to cause feedback inhibition of the NF-κB pathway
    Hutti, Jessica E.
    Turk, Benjamin E.
    Asara, John M.
    Ma, Averil
    Cantley, Lewis C.
    Abbott, Derek W.
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 2007, 27 (21) : 7451 - 7461
  • [26] TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling
    Inoki, K
    Li, Y
    Zhu, TQ
    Wu, J
    Guan, KL
    [J]. NATURE CELL BIOLOGY, 2002, 4 (09) : 648 - 657
  • [27] AMPK and mTOR in Cellular Energy Homeostasis and Drug Targets
    Inoki, Ken
    Kim, Joungmok
    Guan, Kun-Liang
    [J]. ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, VOL 52, 2012, 52 : 381 - 400
  • [28] Nutrient signaling to mTOR and cell growth
    Jewell, Jenna L.
    Guan, Kun-Liang
    [J]. TRENDS IN BIOCHEMICAL SCIENCES, 2013, 38 (05) : 233 - 242
  • [29] Nuclear factor-κB in cancer development and progression
    Karin, Michael
    [J]. NATURE, 2006, 441 (7092) : 431 - 436
  • [30] MTOR interacts with Raptor to form a nutrient-sensitive complex that signals to the cell growth machinery
    Kim, DH
    Sarbassov, DD
    Ali, SM
    King, JE
    Latek, RR
    Erdjument-Bromage, H
    Tempst, P
    Sabatini, DM
    [J]. CELL, 2002, 110 (02) : 163 - 175