Cocompactly cubulated crystallographic groups

被引:8
|
作者
Hagen, Mark F. [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2014年 / 90卷
基金
美国国家科学基金会;
关键词
COXETER GROUPS; CUBE;
D O I
10.1112/jlms/jdu017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the simplicial boundary of a CAT(0) cube complex admitting a proper, cocompact action by a virtually Z(n) group is isomorphic to the hyperoctahedral triangulation of Sn-1, providing a class of groups G for which the simplicial boundary of a G-cocompact cube complex depends only on G. We also use this result to show that the cocompactly cubulated crystallographic groups in dimension n are precisely those that are hyperoctahedral. We apply this result to answer a question of Wise on cocompactly cubulating virtually free abelian groups.
引用
收藏
页码:140 / 166
页数:27
相关论文
共 50 条
  • [1] Cocompactly cubulated 2-dimensional Artin groups
    Huang, Jingyin
    Jankiewicz, Kasia
    Przytycki, Piotr
    COMMENTARII MATHEMATICI HELVETICI, 2016, 91 (03) : 519 - 542
  • [2] Virtually Cocompactly Cubulated Artin-Tits Groups
    Haettel, Thomas
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (04) : 2919 - 2961
  • [3] Cocompactly cubulated graph manifolds
    Hagen, Mark F.
    Przytycki, Piotr
    ISRAEL JOURNAL OF MATHEMATICS, 2015, 207 (01) : 377 - 394
  • [4] Cocompactly cubulated graph manifolds
    Mark F. Hagen
    Piotr Przytycki
    Israel Journal of Mathematics, 2015, 207 : 377 - 394
  • [5] Erratum to “Cocompactly cubulated graph manifolds”
    Mark F. Hagen
    Piotr Przytycki
    Israel Journal of Mathematics, 2016, 213 : 505 - 507
  • [6] COCOMPACTLY CUBULATED GRAPH MANIFOLDS (vol 207, pg 377, 2015)
    Hagen, Mark F.
    Przytycki, Piotr
    ISRAEL JOURNAL OF MATHEMATICS, 2016, 213 (01) : 505 - 507
  • [7] Semistability of cubulated groups
    Sam Shepherd
    Mathematische Annalen, 2023, 387 : 1481 - 1511
  • [8] Semistability of cubulated groups
    Shepherd, Sam
    MATHEMATISCHE ANNALEN, 2022, 387 (3-4) : 1481 - 1511
  • [9] On cubulated relatively hyperbolic groups
    Reyes, Eduardo
    GEOMETRY & TOPOLOGY, 2023, 27 (02) : 575 - 640
  • [10] Finiteness properties of cubulated groups
    Hruska, G. C.
    Wise, Daniel T.
    COMPOSITIO MATHEMATICA, 2014, 150 (03) : 453 - 506