Exploration of gate trench module for vertical GaN devices

被引:10
作者
Ruzzarin, M. [1 ]
Geens, K. [2 ]
Borga, M. [2 ]
Liang, H. [2 ]
You, S. [2 ]
Bakeroot, B. [3 ,4 ]
Decoutere, S. [2 ]
De Santi, C. [1 ]
Neviani, A. [1 ]
Meneghini, M. [1 ]
Meneghesso, G. [1 ]
Zanoni, E. [1 ]
机构
[1] Univ Padua, Dept Informat Engn, Via Gradenigo 6-B, I-35131 Padua, Italy
[2] IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
[3] IMEC, CMST, Technol Pk 126, B-9052 Ghent, Belgium
[4] Univ Ghent, Technol Pk 126, B-9052 Ghent, Belgium
关键词
THRESHOLD-VOLTAGE; MOBILITY; MOSFETS; CHARGE;
D O I
10.1016/j.microrel.2020.113828
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The aim of this work is to present the optimization of the gate trench module for use in vertical GaN devices: we considered the impact of cleaning process of the etched surface of the gate trench, thickness of gate dielectric, and magnesium concentration of the p-GaN layer. The analysis was carried out by comparing the main DC parameters of devices that differ in surface cleaning process of the gate trench, gate dielectric thickness, and body layer doping. On the basis of experimental results, we report that: (i) a good cleaning process of the etched GaN surface of the gate trench is a key factor to enhance the device performance, (ii) a gate dielectric > 35-nm SiO2 results in a narrow distribution for DC characteristics, (iii) lowering the p-doping in the body layer improves the ON-resistance (R-ON). Gate capacitance measurements are performed to further confirm the results. Hypotheses on dielectric trapping/de-trapping mechanisms under positive and negative gate bias are reported.
引用
收藏
页数:6
相关论文
共 35 条
[1]  
Afanasev V.V., 2014, ANAL CHARGE TRAPPING, DOI [10.1016/b978-0-08-099929-6.00006-3., DOI 10.1016/B978-0-08-099929-6.00006-3.]
[2]  
Borga M., 2020, APPL PHYS EXPRESS, V13
[3]   Analysis of GaN cleaning procedures [J].
Diale, M ;
Auret, FD ;
van der Berg, NG ;
Odendaal, RQ ;
Roos, WD .
APPLIED SURFACE SCIENCE, 2005, 246 (1-3) :279-289
[4]   GaN-on-silicon high-electron-mobility transistor technology with ultra-low leakage up to 3000V using local substrate removal and AlN ultra-wide bandgap [J].
Dogmus, Ezgi ;
Zegaoui, Malek ;
Medjdoub, Farid .
APPLIED PHYSICS EXPRESS, 2018, 11 (03)
[5]  
Hilt O, 2015, PROC INT SYMP POWER, P237, DOI 10.1109/ISPSD.2015.7123433
[6]   Materials and processing issues in vertical GaN power electronics [J].
Hu, Jie ;
Zhang, Yuhao ;
Sun, Min ;
Piedra, Daniel ;
Chowdhury, Nadim ;
Palacios, Tomas .
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2018, 78 :75-84
[7]   Enhancement mode AlGaN/GaN HFET with selectively grown pn junction gate [J].
Hu, X ;
Simin, G ;
Yang, J ;
Khan, MA ;
Gaska, R ;
Shur, MS .
ELECTRONICS LETTERS, 2000, 36 (08) :753-754
[8]   A thorough investigation of MOSFETs NBTI degradation [J].
Huard, V ;
Denais, M ;
Perrier, F ;
Revil, N ;
Parthasarathy, C ;
Bravaix, A ;
Vincent, E .
MICROELECTRONICS RELIABILITY, 2005, 45 (01) :83-98
[9]   Large-Area In-Situ Oxide, GaN Interlayer-Based Vertical Trench MOSFET (OG-FET) [J].
Ji, Dong ;
Gupta, Chirag ;
Agarwal, Anchal ;
Chan, Silvia H. ;
Lund, Cory ;
Li, Wenwen ;
Keller, Stacia ;
Mishra, Umesh K. ;
Chowdhury, Srabanti .
IEEE ELECTRON DEVICE LETTERS, 2018, 39 (05) :711-714
[10]   Effect of Fast Components in Threshold-Voltage Shift on Bias Temperature Instability in High-κ MOSFETs [J].
Jo, Minseok ;
Kim, Seonghyun ;
Jung, Seungjae ;
Park, Ju-Bong ;
Lee, Joonmyoung ;
Jung, Hyung-Suk ;
Choi, Rino ;
Hwang, Hyunsang .
IEEE ELECTRON DEVICE LETTERS, 2010, 31 (04) :287-289