On differentiability of stochastic flow for a multidimensional SDE with discontinuous drift

被引:3
作者
Aryasova, Olga V. [1 ]
Pilipenko, Andrey Yu. [2 ]
机构
[1] Natl Acad Sci Ukraine, Inst Geophys, Kiev, Ukraine
[2] Natl Acad Sci Ukraine, Inst Math, Kiev, Ukraine
关键词
Stochastic flow; Continuous additive functional; Differentiability with respect to initial data; BROWNIAN-MOTION;
D O I
10.1214/ECP.v19-2886
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a d-dimensional SDE with an identity diffusion matrix and a drift vector being a vector function of bounded variation. We give a representation for the derivative of the solution with respect to the initial data.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 24 条
[1]   BROWNIAN-MOTION AND HARNACK INEQUALITY FOR SCHRODINGER-OPERATORS [J].
AIZENMAN, M ;
SIMON, B .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (02) :209-273
[2]   BOUNDS FOR FUNDAMENTAL SOLUTION OF A PARABOLIC EQUATION [J].
ARONSON, DG .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 73 (06) :890-&
[3]   On properties of a flow generated by an SDE with discontinuous drift [J].
Aryasova, Olga V. ;
Pilipenko, Andrey Yu. .
ELECTRONIC JOURNAL OF PROBABILITY, 2012, 17 :1-20
[4]   STOCHASTIC FLOWS OF DIFFEOMORPHISMS FOR ONE-DIMENSIONAL SDE WITH DISCONTINUOUS DRIFT [J].
Attanasio, Stefano .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2010, 15 :213-226
[5]  
Bass RF, 2003, ANN PROBAB, V31, P791
[6]  
Blumenthal R. M., 2007, MARKOV PROCESSES POT, Vvi
[7]  
Bogachev V. I., 2007, MEASURE THEORY, VII
[8]  
Dynkin E. B., 1963, MARKOV PROCESSES
[9]  
Federer H., 1996, GEOMETRIC MEASURE TH, DOI DOI 10.1007/978-3-642-62010-2
[10]   Holder Flow and Differentiability for SDEs with Nonregular Drift [J].
Fedrizzi, E. ;
Flandoli, F. .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2013, 31 (04) :708-736