First-Principles Predictions of Janus MoSSe and WSSe for FET Applications

被引:42
作者
Ding, Yu [1 ]
Yang, Guofeng [1 ]
Gu, Yan [1 ,2 ]
Yu, Yingzhou [1 ]
Zhang, Xiumei [1 ]
Tang, Xue [3 ]
Lu, Naiyan [3 ]
Wang, Yueke [1 ]
Dai, Zhicheng [1 ]
Zhao, Huiqin [1 ]
Li, Yuhang [1 ]
机构
[1] Jiangnan Univ, Sch Sci, Jiangsu Prov Res Ctr Light Ind Optoelect Engn & T, Wuxi 214122, Jiangsu, Peoples R China
[2] Jiangnan Univ, Sch Internet Things Engn, Wuxi 214122, Jiangsu, Peoples R China
[3] Jiangnan Univ, State Key Lab Food Sci & Technol, Wuxi 214122, Jiangsu, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
PHOTOLUMINESCENCE ENHANCEMENT; NEGATIVE CAPACITANCE; PERFORMANCE; MONOLAYER; TRANSISTORS; OXIDATION; WSE2;
D O I
10.1021/acs.jpcc.0c06772
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Janus transition-metal dichalcogenides (JTMDs) with an asymmetric structure have attracted much attention because of their obvious potential in electronic and optical applications. However, there are few research studies on field-effect transistors (FETs) related to JTMDs, and the inherent device transport performance is unclear so far. In this work, we systematically investigate the ballistic transport performance of sub-10 nm monolayer Janus MoSSe and WSSe metal oxide semiconductor FETs (MOSFETs) based on ab initio quantum transport simulations. The on-state current, delay time, and power dissipation of Janus MoSSe and WSSe MOSFETs with a proper doping concentration under the requirements of high performance (HP) in the International Technology Roadmap for Semiconductor are systematically studied. The calculated results indicate that the on-state currents of MoSSe MOSFETs can satisfy about 35% requirement of HP standards and the WSSe MOSFETs fulfill the HP application targets until the gate length is scaled down to 4 nm. In addition, we discussed the underlying physical mechanisms and further explored the effect of channel material oxidation on the device performance. As a result, it is believed that our predictions could greatly stimulate the potential of Janus MoSSe and WSSe applied to transistors.
引用
收藏
页码:21197 / 21206
页数:10
相关论文
共 54 条
[1]   Ab initio molecular simulations with numeric atom-centered orbitals [J].
Blum, Volker ;
Gehrke, Ralf ;
Hanke, Felix ;
Havu, Paula ;
Havu, Ville ;
Ren, Xinguo ;
Reuter, Karsten ;
Scheffler, Matthias .
COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (11) :2175-2196
[2]   Density-functional method for nonequilibrium electron transport -: art. no. 165401 [J].
Brandbyge, M ;
Mozos, JL ;
Ordejón, P ;
Taylor, J ;
Stokbro, K .
PHYSICAL REVIEW B, 2002, 65 (16) :1654011-16540117
[3]   GENERALIZED MANY-CHANNEL CONDUCTANCE FORMULA WITH APPLICATION TO SMALL RINGS [J].
BUTTIKER, M ;
IMRY, Y ;
LANDAUER, R ;
PINHAS, S .
PHYSICAL REVIEW B, 1985, 31 (10) :6207-6215
[4]   Ultrathin Janus WSSe buffer layer for W(S/Se)2 absorber based solar cells: A hybrid, DFT and macroscopic, simulation studies [J].
Chaurasiya, Rajneesh ;
Gupta, Goutam Kumar ;
Dixit, Ambesh .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2019, 201
[5]   MoS2 transistors with 1-nanometer gate lengths [J].
Desai, Sujay B. ;
Madhvapathy, Surabhi R. ;
Sachid, Angada B. ;
Llinas, Juan Pablo ;
Wang, Qingxiao ;
Ahn, Geun Ho ;
Pitner, Gregory ;
Kim, Moon J. ;
Bokor, Jeffrey ;
Hu, Chenming ;
Wong, H. -S. Philip ;
Javey, Ali .
SCIENCE, 2016, 354 (6308) :99-102
[6]   Large In-Plane and Vertical Piezoelectricity in Janus Transition Metal Dichalchogenides [J].
Dong, Liang ;
Lou, Jun ;
Shenoy, Vivek B. .
ACS NANO, 2017, 11 (08) :8242-8248
[7]   Prediction of Enhanced Catalytic Activity for Hydrogen Evolution Reaction in Janus Transition Metal Dichalcogenides [J].
Er, Dequan ;
Ye, Han ;
Frey, Nathan C. ;
Kumar, Hemant ;
Lou, Jun ;
Shenoy, Vivek B. .
NANO LETTERS, 2018, 18 (06) :3943-3949
[8]   Improving Performances of In-Plane Transition-Metal Dichalcogenide Schottky Barrier Field-Effect Transistors [J].
Fan, Zhi-Qang ;
Jiang, Xiang-Wei ;
Chen, Jiezhi ;
Luo, Jun-Wei .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (22) :19271-19277
[9]  
Fiori G, 2014, NAT NANOTECHNOL, V9, P768, DOI [10.1038/nnano.2014.207, 10.1038/NNANO.2014.207]
[10]   Sub-10 nm Carbon Nanotube Transistor [J].
Franklin, Aaron D. ;
Luisier, Mathieu ;
Han, Shu-Jen ;
Tulevski, George ;
Breslin, Chris M. ;
Gignac, Lynne ;
Lundstrom, Mark S. ;
Haensch, Wilfried .
NANO LETTERS, 2012, 12 (02) :758-762