A DPG method for steady viscous compressible flow

被引:27
|
作者
Chan, Jesse [1 ]
Demkowicz, Leszek [2 ]
Moser, Robert [2 ]
机构
[1] Rice Univ, Houston, TX 77005 USA
[2] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
关键词
Petrov-Galerkin; Minimum residual; Higher order; Adaptivity; Anisotropic mesh refinement; Convection-diffusion; Burgers equation; Compressible Navier-Stokes; NAVIER-STOKES EQUATIONS; FINITE-ELEMENT-METHOD; COMPUTATIONAL FLUID-DYNAMICS; DOMINATED DIFFUSION-PROBLEMS; P-VERSION; GALERKIN; FORMULATION; ADAPTIVITY; EULER;
D O I
10.1016/j.compfluid.2014.02.024
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Discontinuous Petrov-Galerkin (DPG) method is a class of novel higher order adaptive finite element methods derived from the minimization of the residual of the variational problem (Demkowicz and Gopalakrishnan, 2011) [1], and has been shown to deliver a method for convection diffusion that is provably robust in the diffusion parameter (Demkowicz and Heuer, in press; Chan et al., in press) [2,3]. In this work, the DPG method is extrapolated to nonlinear systems, and applied to several problems in fluid dynamics whose solutions exhibit boundary layers or singularities in stresses. In particular, the effectiveness of DPG as a numerical method for compressible flow is assessed with the application of DPG to two model problems over a range of Mach numbers and laminar Reynolds numbers using automatic adaptivity with higher order finite elements, beginning with highly under-resolved coarse initial meshes. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:69 / 90
页数:22
相关论文
共 50 条
  • [21] Analysis of a heterogeneous domain decomposition for compressible viscous flow
    Coclici, CA
    Wendland, WL
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2001, 11 (04): : 565 - 599
  • [22] Numerical Experiments with Several Variant WENO Schemes for the Compressible Viscous Flow Computations
    Hsieh, Tsang-Jen
    Wang, Ching-Hua
    Yang, Jaw-Yen
    JOURNAL OF THE CHINESE SOCIETY OF MECHANICAL ENGINEERS, 2009, 30 (03): : 209 - 220
  • [23] A boundary element method for steady viscous fluid flow using penalty function formulation
    Grigoriev, MM
    Fafurin, AV
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1997, 25 (08) : 907 - 929
  • [24] Steady 3D viscous compressible flows with adiabatic exponent γ ∈ (1, ∞)
    Plotnikov, P. I.
    Weigant, W.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (01): : 58 - 82
  • [25] On steady solutions to vacuumless Newtonian models of compressible flow
    Lasica, Michal
    NONLINEARITY, 2014, 27 (11) : 2663 - 2687
  • [26] Steady compressible Navier-Stokes flow in a square
    Piasecki, Tomasz
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 357 (02) : 447 - 467
  • [27] A-posteriori error estimation for the finite point method with applications to compressible flow
    Ortega, Enrique
    Flores, Roberto
    Onate, Eugenio
    Idelsohn, Sergio
    COMPUTATIONAL MECHANICS, 2017, 60 (02) : 219 - 233
  • [28] Comparison of numerical methods for the solution of viscous incompressible and low Mach number compressible flow
    Balazsova, Monika
    Eesenek, Jan
    Feistauer, Miloslav
    Svacek, Petr
    Horacek, Jaromir
    COMPUTERS & FLUIDS, 2018, 174 : 167 - 178
  • [29] Spatial flow around an obstacle of a mixture of compressible viscous fluids
    Zhalnina, A. A.
    Kucher, N. A.
    ALL-RUSSIAN CONFERENCE AND SCHOOL FOR YOUNG SCIENTISTS, DEVOTED TO 100TH ANNIVERSARY OF ACADEMICIAN L.V. OVSIANNIKOV - MATHEMATICAL PROBLEMS OF CONTINUUM MECHANICS, 2019, 1268
  • [30] Numerical study of two models for viscous compressible fluid flows
    Dolejsi, Vit
    Svard, Magnus
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 427 (427)