A DPG method for steady viscous compressible flow

被引:27
|
作者
Chan, Jesse [1 ]
Demkowicz, Leszek [2 ]
Moser, Robert [2 ]
机构
[1] Rice Univ, Houston, TX 77005 USA
[2] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
关键词
Petrov-Galerkin; Minimum residual; Higher order; Adaptivity; Anisotropic mesh refinement; Convection-diffusion; Burgers equation; Compressible Navier-Stokes; NAVIER-STOKES EQUATIONS; FINITE-ELEMENT-METHOD; COMPUTATIONAL FLUID-DYNAMICS; DOMINATED DIFFUSION-PROBLEMS; P-VERSION; GALERKIN; FORMULATION; ADAPTIVITY; EULER;
D O I
10.1016/j.compfluid.2014.02.024
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Discontinuous Petrov-Galerkin (DPG) method is a class of novel higher order adaptive finite element methods derived from the minimization of the residual of the variational problem (Demkowicz and Gopalakrishnan, 2011) [1], and has been shown to deliver a method for convection diffusion that is provably robust in the diffusion parameter (Demkowicz and Heuer, in press; Chan et al., in press) [2,3]. In this work, the DPG method is extrapolated to nonlinear systems, and applied to several problems in fluid dynamics whose solutions exhibit boundary layers or singularities in stresses. In particular, the effectiveness of DPG as a numerical method for compressible flow is assessed with the application of DPG to two model problems over a range of Mach numbers and laminar Reynolds numbers using automatic adaptivity with higher order finite elements, beginning with highly under-resolved coarse initial meshes. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:69 / 90
页数:22
相关论文
共 50 条
  • [1] The Dirichlet problem for steady viscous compressible flow in three dimensions
    Frehse, J.
    Steinhauer, M.
    Weigant, W.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2012, 97 (02): : 85 - 97
  • [2] Local preconditioning and variational multiscale stabilization for Euler compressible steady flow
    Moragues Ginard, Margarida
    Vazquez, Mariano
    Houzeaux, Guillaume
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 305 : 468 - 500
  • [3] STEADY VISCOUS COMPRESSIBLE CHANNEL FLOWS
    Guo, Yan
    Jiang, Song
    Zhou, Chunhui
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (05) : 3648 - 3670
  • [4] Zonal disturbance region update method for steady compressible viscous flows
    Hu, Shuyao
    Jiang, Chongwen
    Gao, Zhenxun
    Lee, Chun-Hian
    COMPUTER PHYSICS COMMUNICATIONS, 2019, 244 : 97 - 116
  • [5] A discontinuous Galerkin method for viscous compressible multifluids
    Michoski, C.
    Evans, J. A.
    Schmitz, P. G.
    Vasseur, A.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (06) : 2249 - 2266
  • [6] A fully implicit method for steady and unsteady viscous flow simulations
    Li, J
    Li, FW
    E, Q
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2003, 43 (02) : 147 - 163
  • [8] A finite element method for compressible viscous fluid flows
    Jog, C. S.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 66 (07) : 852 - 874
  • [9] An Analysis of Compressible Viscous Flows around a Body using the Finite Element Method
    Nasu, S.
    Kawahara, M.
    PROCEEDINGS OF THE SEVENTH INTERNATIONAL CONFERENCE ON ENGINEERING COMPUTATIONAL TECHNOLOGY, 2010, 94
  • [10] A finite element method for compressible and incompressible flows
    El Kadri, Nacer E. E.
    Chillali, Abdelhakim
    SN APPLIED SCIENCES, 2020, 2 (02):