A Highly Efficient Self-Healing Elastomer with Unprecedented Mechanical Properties

被引:596
作者
Zhang, Luzhi [1 ]
Liu, Zenghe [2 ]
Wu, Xueli [3 ]
Guan, Qingbao [1 ]
Chen, Shuo [1 ]
Sun, Lijie [1 ]
Guo, Yifan [1 ]
Wang, Shuliang [1 ]
Song, Jianchun [1 ]
Jeffries, Eric Meade [4 ]
He, Chuanglong [2 ]
Qing, Feng-Ling [2 ]
Bao, Xiaoguang [3 ]
You, Zhengwei [1 ]
机构
[1] Donghua Univ, State Key Lab Modificat Chem Fibers & Polymer Mat, Int Joint Lab Adv Fiber & Low Dimens Mat, Coll Mat Sci & Engn, Shanghai 201620, Peoples R China
[2] Donghua Univ, Chem Engn & Biotechnol, Coll Chem, Shanghai 201620, Peoples R China
[3] Soochow Univ, Chem Engn & Mat Sci, Coll Chem, Suzhou 215123, Jiangsu, Peoples R China
[4] 6120 Fillmore Pl,Apt 2, West New York, NJ 07093 USA
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
dynamic covalent bonds; elastomers; metal coordination; polyurethane; self-healing; POLYMERS; CHEMISTRY;
D O I
10.1002/adma.201901402
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
It is highly desirable, although very challenging, to develop self-healable materials exhibiting both high efficiency in self-healing and excellent mechanical properties at ambient conditions. Herein, a novel Cu(II)-dimethylglyoxime-urethane-complex-based polyurethane elastomer (Cu-DOU-CPU) with synergetic triple dynamic bonds is developed. Cu-DOU-CPU demonstrates the highest reported mechanical performance for self-healing elastomers at room temperature, with a tensile strength and toughness up to 14.8 MPa and 87.0 MJ m(-3), respectively. Meanwhile, the Cu-DOU-CPU spontaneously self-heals at room temperature with an instant recovered tensile strength of 1.84 MPa and a continuously increased strength up to 13.8 MPa, surpassing the original strength of all other counterparts. Density functional theory calculations reveal that the coordination of Cu(II) plays a critical role in accelerating the reversible dissociation of dimethylglyoxime-urethane, which is important to the excellent performance of the self-healing elastomer. Application of this technology is demonstrated by a self-healable and stretchable circuit constructed from Cu-DOU-CPU.
引用
收藏
页数:8
相关论文
共 40 条
[1]  
Ahn BK, 2014, NAT MATER, V13, P867, DOI [10.1038/NMAT4037, 10.1038/nmat4037]
[2]   Optically healable supramolecular polymers [J].
Burnworth, Mark ;
Tang, Liming ;
Kumpfer, Justin R. ;
Duncan, Andrew J. ;
Beyer, Frederick L. ;
Fiore, Gina L. ;
Rowan, Stuart J. ;
Weder, Christoph .
NATURE, 2011, 472 (7343) :334-U230
[3]   Superstretchable, Self-Healing Polymeric Elastomers with Tunable Properties [J].
Cao, Peng-Fei ;
Li, Bingrui ;
Hong, Tao ;
Townsend, Jacob ;
Qiang, Zhe ;
Xing, Kunyue ;
Vogiatzis, Konstantinos D. ;
Wang, Yangyang ;
Mays, Jimmy W. ;
Sokolov, Alexei P. ;
Saito, Tomonori .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (22)
[4]   Room-Temperature Self-Healing Polymers Based on Dynamic-Covalent Boronic Esters [J].
Cash, Jessica J. ;
Kubo, Tomohiro ;
Bapat, Abhijeet P. ;
Sumerlin, Brent S. .
MACROMOLECULES, 2015, 48 (07) :2098-2106
[5]   A thermally re-mendable cross-linked polymeric material [J].
Chen, XX ;
Dam, MA ;
Ono, K ;
Mal, A ;
Shen, HB ;
Nutt, SR ;
Sheran, K ;
Wudl, F .
SCIENCE, 2002, 295 (5560) :1698-1702
[6]   Covalently Cross-Linked Elastomers with Self-Healing and Malleable Abilities Enabled by Boronic Ester Bonds [J].
Chen, Yi ;
Tang, Zhenghai ;
Zhang, Xuhui ;
Liu, Yingjun ;
Wu, Siwu ;
Guo, Baochun .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (28) :24224-24231
[7]  
Chen YL, 2012, NAT CHEM, V4, P467, DOI [10.1038/nchem.1314, 10.1038/NCHEM.1314]
[8]   Self-healing and thermoreversible rubber from supramolecular assembly [J].
Cordier, Philippe ;
Tournilhac, Francois ;
Soulie-Ziakovic, Corinne ;
Leibler, Ludwik .
NATURE, 2008, 451 (7181) :977-980
[9]   Comprehensive study of the thermo-reversibility of Diels-Alder based PCL polymer networks [J].
Defize, Thomas ;
Thomassin, Jean-Michel ;
Alexandre, Michael ;
Gilbert, Bernard ;
Riva, Raphael ;
Jerome, Christine .
POLYMER, 2016, 84 :234-242
[10]   Biomimetic Self-Healing [J].
Diesendruck, Charles E. ;
Sottos, Nancy R. ;
Moore, Jeffrey S. ;
White, Scott R. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (36) :10428-10447