An elastic-plastic finite element model and high resolution experimental measurements of growing fatigue cracks are employed in partnership to investigate the relationship between crack closure, near-tip deformation behavior, and remote load-displacement measurements. The model focuses on plasticity-induced closure effects for fatigue cracks in the Paris regime, while the experiments study fatigue cracks in the Paris and near-threshold regimes in a variety of materials. The suitability of the ASTM compliance offset method and the recently-proposed adjusted compliance ratio (ACR) method to characterize near-tip closure effects is evaluated. The experiments and analyses both show that crack-tip strains below the crack-opening stress, S-op, are a relatively small fraction of the total crack-tip strain range for cracks in the Paris regime, and therefore may be insignificant for crack-tip deformation and damage and crack growth. The experiments further indicate that crack-tip strains below S-op are a relatively larger fraction of the total crack-tip strain at lower Delta K values, nearer the threshold where S-op values are higher. The current ASTM compliance offset procedure for determining the crack opening load is shown to provide accurate information about true crack-tip opening lends in theory. However, due to the limited sensitivity of the method in practice, and the corresponding need to employ a non-zero compliance offset. the method gives underestimates of opening and closing loads that may be considerably in error relative to the true crack-tip values. The current ACR technique does not appear to do a good job of characterizing the near-tip deformation response for cracks in the Paris regime, because remote displacement measurements do not appear to be adequately sensitive to near-tip strains.