Galois theory and linear algebra

被引:23
作者
Gow, Rod [1 ]
Quinlan, Rachel
机构
[1] Univ Coll Dublin, Sch Math Sci, Dublin 4, Ireland
基金
爱尔兰科学基金会;
关键词
Field; Galois extension; Cyclic extension; Galois group; Hyperplane; Endomorphism annihilating a subspace; Polynomial;
D O I
10.1016/j.laa.2008.06.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let K be a field admitting a Galois extension L of degree it with Galois group G. Artin's lemma on the independence of characters implies that the algebra of K-linear endomorphisms of L is identical with the set of L-linear combinations of the elements of G. This paper examines some consequences of this description of endomorphisms. We provide a characterization of the rank I endomorphisms and describe the matrix-theoretic trace of an endomorphism in terms of the field-theoretic trace. We also investigate in greater detail those endomorphisms annihilating a K-subspace in the case when G is cyclic. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1778 / 1789
页数:12
相关论文
共 4 条
[1]  
GOW R, PROPERTIES SUBSPACES
[2]  
GOW R, GALOIS EXTENSI UNPUB
[3]  
Lang S., 1993, ALGEBRA
[4]  
Passman D. S., 1989, INFINITE CROSSED PRO