Chitosan-graft-PAMAM loading nitric oxide for efficient antibacterial application

被引:74
作者
Li, Guowei [1 ]
Yu, Siming [1 ]
Xue, Wei [1 ,2 ]
Ma, Dong [1 ]
Zhang, Wu [2 ,3 ]
机构
[1] Jinan Univ, Dept Biomed Engn, Key Lab Biomat, Guangdong Higher Educ Inst, Guangzhou 510632, Guangdong, Peoples R China
[2] Jinan Univ, Affiliated Hosp 1, Guangzhou 510632, Guangdong, Peoples R China
[3] Jinan Univ, Sch Stomatol, Guangzhou 510632, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Antibacterial activity; Chitosan; Nitric oxide; PAMAM; RELEASE; DENDRIMERS; EFFICACY; NANOPARTICLES; NANOSPHERES; SCAFFOLD; SURFACE; CHITIN;
D O I
10.1016/j.cej.2018.04.159
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Fabrication of nitric oxide (NO) donors with good biocompatibility and high NO loading efficiency for antibacterial applications remains a big challenge. In the present work, using low molecular weight chitosan (CS) with high water solubility as the backbone, we designed and synthesized a poly(amidoamine) (PAMAM) dendron-grafted CS using a fast and simple copper-catalyzed azide-alkyne cyclization reaction of azide-modified CS (CS-N-3) and propargyl focal point PAMAM dendrons with the third generation. NO was loaded on CS-PAMAM via a reaction with its secondary amine groups, which resulted in the formation of CS-PAMAM/NONOate with a maximal NO loading amount of 1.7 mu moL/mg. The CS-PAMAM/NONOate showed significant antibacterial activity against both Gram-negative E. coli and Gram-positive S. aureus, where 2.5 mg of CS-PAMAM/NONOate showed an inhibition zone with a diameter of about 20 mm. Moreover, the CS-PAMAM/NONOate presented negligible toxicity on normal mouse embryonic fibroblast cells, suggesting excellent biocompatibility. These findings indicate that the prepared CS-PAMAM/NONOate is promising for use in wound dressing industry as wound healing and treatment of anti-bacterial infections.
引用
收藏
页码:923 / 931
页数:9
相关论文
共 40 条
[1]   Multidrug evolutionary strategies to reverse antibiotic resistance [J].
Baym, Michael ;
Stone, Laura K. ;
Kishony, Roy .
SCIENCE, 2016, 351 (6268)
[2]   THE BIOLOGICAL ASSAY OF STREPTOMYCIN BY A MODIFIED CYLINDER PLATE METHOD [J].
BROWNLEE, KA ;
DELVES, CS ;
DORMAN, M ;
GREEN, CA ;
GRENFELL, E ;
JOHNSON, JDA ;
SMITH, N .
JOURNAL OF GENERAL MICROBIOLOGY, 1948, 2 (01) :40-53
[3]   Dendronized Chitosan Derivative as a Biocompatible Gene Delivery Carrier [J].
Deng, Junjie ;
Zhou, Yanfang ;
Xu, Bo ;
Mai, Kaijin ;
Deng, Yubin ;
Zhang, Li-Ming .
BIOMACROMOLECULES, 2011, 12 (03) :642-649
[4]   Chitosan: A versatile biopolymer for orthopaedic tissue-engineering [J].
Di Martino, A ;
Sittinger, M ;
Risbud, MV .
BIOMATERIALS, 2005, 26 (30) :5983-5990
[5]   Biofilm formation: A clinically relevant microbiological process [J].
Donlan, RM .
CLINICAL INFECTIOUS DISEASES, 2001, 33 (08) :1387-1392
[6]   Antimicrobial reactive oxygen and nitrogen species: Concepts and controversies [J].
Fang, FC .
NATURE REVIEWS MICROBIOLOGY, 2004, 2 (10) :820-832
[7]   Mechanisms of nitric oxide-related antimicrobial activity [J].
Fang, FC .
JOURNAL OF CLINICAL INVESTIGATION, 1997, 99 (12) :2818-2825
[8]   Characterization of Chitin and Chitosan Molecular Structure in Aqueous Solution [J].
Franca, Eduardo F. ;
Lins, Roberto D. ;
Freitas, Luiz C. G. ;
Straatsma, T. P. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2008, 4 (12) :2141-2149
[9]   Cationic antiseptics: diversity of action under a common epithet [J].
Gilbert, P ;
Moore, LE .
JOURNAL OF APPLIED MICROBIOLOGY, 2005, 99 (04) :703-715
[10]   Bactericidal efficacy of nitric oxide-releasing silica nanoparticles [J].
Hetrick, Evan M. ;
Shin, Jae Ho ;
Stasko, Nathan A. ;
Johnson, C. Bryce ;
Wespe, Daniel A. ;
Holmuhamedov, Ekhson ;
Schoenfisch, Mark H. .
ACS NANO, 2008, 2 (02) :235-246