Sparsity-Aware Sphere Decoding: Algorithms and Complexity Analysis

被引:22
作者
Barik, Somsubhra [1 ]
Vikalo, Haris [1 ]
机构
[1] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
Sphere decoding; sparsity; expected complexity; integer least-squares; l(0) norm; SIGNAL RECOVERY; FINGERPRINTS; SEARCH; NUMBER;
D O I
10.1109/TSP.2014.2307836
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Integer least-squares problems, concerned with solving a system of equations where the components of the unknown vector are integer-valued, arise in a wide range of applications. In many scenarios the unknown vector is sparse, i.e., a large fraction of its entries are zero. Examples include applications in wireless communications, digital fingerprinting, and array-comparative genomic hybridization systems. Sphere decoding, commonly used for solving integer least-squares problems, can utilize the knowledge about sparsity of the unknown vector to perform computationally efficient search for the solution. In this paper, we formulate and analyze the sparsity-aware sphere decoding algorithm that imposes l(0)-norm constraint on the admissible solution. Analytical expressions for the expected complexity of the algorithm for alphabets typical of sparse channel estimation and source allocation applications are derived and validated through extensive simulations. The results demonstrate superior performance and speed of sparsity-aware sphere decoder compared to the conventional sparsity-unaware sphere decoding algorithm. Moreover, variance of the complexity of the sparsity-aware sphere decoding algorithm for binary alphabets is derived. The search space of the proposed algorithm can be further reduced by imposing lower bounds on the value of the objective function. The algorithm is modified to allow for such a lower bounding technique and simulations illustrating efficacy of the method are presented. Performance of the algorithm is demonstrated in an application to sparse channel estimation, where it is shown that sparsity-aware sphere decoder performs close to theoretical lower limits.
引用
收藏
页码:2212 / 2225
页数:14
相关论文
共 38 条
[1]   Closest point search in lattices [J].
Agrell, E ;
Eriksson, T ;
Vardy, A ;
Zeger, K .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (08) :2201-2214
[2]  
[Anonymous], 1993, GEOMETRIC ALGORITHMS
[3]  
[Anonymous], 2010, P IEEE GLOB TEL C GL
[4]  
[Anonymous], 2006, P INT C MATH MADR SP
[5]  
[Anonymous], THESIS STANFORD U ST
[6]   Fixing the complexity of the sphere decoder for MIMO detection [J].
Barbero, Luis G. ;
Thompson, John S. .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2008, 7 (06) :2131-2142
[7]  
Barik S., 2013, P IEEE INT C AC SPEE
[8]  
BERGER CR, 2009, P MTS IEEE OCEANS C
[9]   Robust uncertainty principles:: Exact signal reconstruction from highly incomplete frequency information [J].
Candès, EJ ;
Romberg, J ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) :489-509
[10]   Near-optimal signal recovery from random projections: Universal encoding strategies? [J].
Candes, Emmanuel J. ;
Tao, Terence .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (12) :5406-5425