LOCAL STABILITY IMPLIES GLOBAL STABILITY FOR THE PLANAR RICKER COMPETITION MODEL

被引:37
作者
Balera, E. Cabral [1 ]
Elaydi, Saber [1 ]
Luis, Rafael [2 ]
机构
[1] Trinity Univ, Dept Math, San Antonio, TX 78212 USA
[2] Univ Tecn Lisboa, Inst Super Tecn, Ctr Math Anal Geometry & Dynam Syst, Lisbon, Portugal
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2014年 / 19卷 / 02期
关键词
Competition model; local stability; global stability; critical curves; compact invariant set; principal preimage function; fold; cusp; BIFURCATION; MAPPINGS;
D O I
10.3934/dcdsb.2014.19.323
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Under certain analytic and geometric assumptions we show that local stability of the coexistence (positive) fixed point of the planar Ricker competition model implies global stability with respect to the interior of the positive quadrant. This result is a confluence of ideas from Dynamical Systems, Geometry, and Topology that provides a framework to the study of global stability for other planar competition models.
引用
收藏
页码:323 / 351
页数:29
相关论文
共 27 条
[1]  
[Anonymous], 2004, ELEMENTS APPL BIFURC
[2]  
Barugola A., 1996, NONLINEAR SCI A
[3]  
Cathala J., 1992, P EUR C IT THEOR AUS
[4]   Dynamics of maps with nilpotent Jacobians [J].
Chamberland, M .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2006, 12 (01) :49-56
[5]  
Chow S.-N., 2012, Methods of Bifurcation Theory, V251
[6]  
CULL P, 1988, B MATH BIOL, V50, P67
[7]  
Devaney R. L., 2003, INTRO CHAOTIC DYNAMI
[8]  
Elaydi S., 2008, DISCRETE CHAOS APPL
[9]   Open problems in some competition models [J].
Elaydi, Saber ;
Luis, Rafael .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2011, 17 (12) :1873-1877
[10]  
Fessler R., 1995, Ann. Polon. Math., V62, P45