The C-terminal domain of Escherichia coli Hfq increases the stability of the hexamer

被引:56
|
作者
Arluison, V
Folichon, M
Marco, S
Derreumaux, P
Pellegrini, O
Seguin, J
Hajnsdorf, E
Regnier, P
机构
[1] Univ Paris 07, CNRS, UPR 9073, Inst Biol Physicochim, F-75005 Paris, France
[2] Inst Curie, CNRS, UMR 168, F-75231 Paris, France
[3] Inst Biol Physicochim, CNRS, UMR 9080, F-75005 Paris, France
[4] CEA, Serv Biophys Fonct Membranaires, DBJC, Gif Sur Yvette, France
[5] CNRS, URA 2096, Gif Sur Yvette, France
来源
EUROPEAN JOURNAL OF BIOCHEMISTRY | 2004年 / 271卷 / 07期
关键词
RNA binding protein; Sm-like (L-Sm); beta-topology; urea equilibrium unfolding; electron microscopy;
D O I
10.1111/j.1432-1033.2004.04026.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Hfq (Host factor 1) polypeptide is a nucleic acid binding protein involved in the synthesis of many polypeptides. Hfq particularly affects the translation and the stability of several RNAs. In an earlier study, the use of fold recognition methods allowed us to detect a relationship between Escherichia coli Hfq and the Sm topology. This topology was further validated by a series of biophysical studies and the Hfq structure was modelled on an Sm protein. Hfq forms a beta-sheet ring-shaped hexamer. As our previous study predicted a large number of alternative conformations for the C-terminal region, we have determined whether the last 19 C-terminal residues are necessary for protein function. We find that the C-terminal truncated protein is fully capable of binding a polyadenylated RNA (K-d of 120 pM vs. 50 pM for full-length Hfq). This result shows that the functional core of E. coli Hfq resides in residues 1-70 and confirms previous genetic studies. Using equilibrium unfolding studies, however, we find that full-length Hfq is 1.8 kcal.mol(-1) more stable than its truncated variant. Electron microscopy analysis of both truncated and full-length proteins indicates a structural rearrangement between the subunits upon truncation. This conformational change is coupled to a reduction in beta-strand content, as determined by Fourier transform infra-red. On the basis of these results, we propose that the C-terminal domain could protect the interface between the subunits and stabilize the hexameric Hfq structure. The origin of this C-terminal domain is also discussed.
引用
收藏
页码:1258 / 1265
页数:8
相关论文
共 50 条
  • [1] The C-terminal domain of Escherichia coli Hfq is required for regulation
    Vecerek, Branislav
    Rajkowitsch, Lukas
    Sonnleitner, Elisabeth
    Schroeder, Renee
    Blaesi, Udo
    NUCLEIC ACIDS RESEARCH, 2008, 36 (01) : 133 - 143
  • [2] E. coli DNA associated with isolated Hfq interacts with Hfq's distal surface and C-terminal domain
    Updegrove, Taylor B.
    Correia, John J.
    Galletto, Roberto
    Bujalowski, Wlodzimierz
    Wartell, Roger M.
    BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS, 2010, 1799 (08): : 588 - 596
  • [3] Compaction and condensation of DNA mediated by the C-terminal domain of Hfq
    Malabirade, Antoine
    Jiang, Kai
    Kubiak, Krzysztof
    Diaz-Mendoza, Alvaro
    Liu, Fan
    van Kan, Jeroen A.
    Berret, Jean-Francois
    Arluison, Veronique
    van der Maarel, Johan R. C.
    NUCLEIC ACIDS RESEARCH, 2017, 45 (12) : 7299 - 7308
  • [4] Regulation of Escherichia coli RelA requires oligomerization of the C-terminal domain
    Gropp, M
    Strausz, Y
    Gross, M
    Glaser, G
    JOURNAL OF BACTERIOLOGY, 2001, 183 (02) : 570 - 579
  • [5] Expression, purification and crystallization of the C-terminal domain of Escherichia coli adenylyltransferase
    Xu, YB
    Wen, DY
    Brown, C
    Chen, CJ
    Carr, PD
    Ollis, DL
    Vasudevan, SG
    ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS, 2005, 61 : 663 - 665
  • [6] Structure of the Escherichia coli RNA polymerase α subunit C-terminal domain
    Lara-Gonzalez, Samuel
    Birktoft, Jens J.
    Lawson, Catherine L.
    ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 : 806 - 812
  • [7] Escherichia coli RelA Regulation via Its C-Terminal Domain
    Kaspy, Ilana
    Glaser, Gad
    FRONTIERS IN MICROBIOLOGY, 2020, 11
  • [8] The C-terminal domain of Escherichia coli YfhD functions as a lytic transglycosylase
    Scheurwater, Edie M.
    Clarke, Anthony J.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (13) : 8363 - 8373
  • [9] Condensation of DNA mediated by the amyloidogenic C-terminal domain of Hfq
    Malabirade, A.
    Jiang, K.
    Diaz-Mendoza, A.
    Berret, J-F.
    Arluison, V.
    van der Maarel, J. R. C.
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2017, 46 : S145 - S145
  • [10] Crystallographic analysis of the C-terminal domain of the Escherichia coli lipoprotein BamC
    Kim, Kelly H.
    Aulakh, Suraaj
    Tan, Wendy
    Paetzel, Mark
    ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS, 2011, 67 : 1350 - 1358