A survey of micro-expression recognition

被引:23
|
作者
Zhou, Ling [1 ]
Shao, Xiuyan [2 ]
Mao, Qirong [3 ]
机构
[1] Jiangsu Univ, Sch Comp Sci & Commun Engn, Zhenjiang, Jiangsu, Peoples R China
[2] Southeast Univ, Nanjing, Jiangsu, Peoples R China
[3] Jiangsu Univ, Jiangsu Engn Res Ctr, Sch Comp Sci & Commun Engn, Big Data Ubiquitous Percept & Intelligent Agr App, Zhenjiang, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Micro-expression recognition; Deep learning; Micro-expression datasets; Survey; OPTICAL-FLOW; DYNAMICS; FEATURES; MODEL;
D O I
10.1016/j.imavis.2020.104043
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The limited capacity to recognize micro-expressions with subtle and rapid motion changes is a long-standing problem that presents a unique challenge for expression recognition systems and even for humans. The problem regarding micro-expression is less covered by research when compared to macro-expression. Nevertheless, micro-expression recognition (MER) is imperative to exploit the full potential of expression recognition for real-world applications. Recent MER systems generally focus on three important issues: overfitting caused by a lack of sufficient training data, the imbalanced distribution of samples, and robust features for improving the accuracy of recognition. In this paper, we provide a comprehensive survey on MER, including datasets and algorithms that provide insights into these intrinsic problems. First, we introduce the available datasets that are widely used in the literature. We then describe the pre-processing in the standard pipeline of an MER system. For the state of the art in MER, we divide the existing novel algorithms into 6 different tasks according to the type of classes and evaluation protocols. Detailed experiment settings and competitive performances for those 6 tasks are summarized in this section. Finally, we review the remaining challenges and corresponding opportunities in this field as well as future directions for the design of robust MER systems. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A survey: facial micro-expression recognition
    Madhumita Takalkar
    Min Xu
    Qiang Wu
    Zenon Chaczko
    Multimedia Tools and Applications, 2018, 77 : 19301 - 19325
  • [2] A survey: facial micro-expression recognition
    Takalkar, Madhumita
    Xu, Min
    Wu, Qiang
    Chaczko, Zenon
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (15) : 19301 - 19325
  • [3] Deep Learning for Micro-Expression Recognition: A Survey
    Li, Yante
    Wei, Jinsheng
    Liu, Yang
    Kauttonen, Janne
    Zhao, Guoying
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2022, 13 (04) : 2028 - 2046
  • [4] HTNet for micro-expression recognition
    Wang, Zhifeng
    Zhang, Kaihao
    Luo, Wenhan
    Sankaranarayana, Ramesh
    NEUROCOMPUTING, 2024, 602
  • [5] Micro-expression recognition system
    Zhang, Peng
    Ben, Xianye
    Yan, Rui
    Wu, Chen
    Guo, Chang
    OPTIK, 2016, 127 (03): : 1395 - 1400
  • [6] LAENet for micro-expression recognition
    Gan, Y. S.
    Lien, Sung-En
    Chiang, Yi-Chen
    Liong, Sze-Teng
    VISUAL COMPUTER, 2024, 40 (02): : 585 - 599
  • [7] CapsuleNet for Micro-Expression Recognition
    Nguyen Van Quang
    Chun, Jinhee
    Tokuyama, Takeshi
    2019 14TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION (FG 2019), 2019, : 635 - 641
  • [8] LAENet for micro-expression recognition
    Y. S. Gan
    Sung-En Lien
    Yi-Chen Chiang
    Sze-Teng Liong
    The Visual Computer, 2024, 40 (2) : 585 - 599
  • [9] Micro-attention for micro-expression recognition
    Wang, Chongyang
    Peng, Min
    Bi, Tao
    Chen, Tong
    NEUROCOMPUTING, 2020, 410 : 354 - 362
  • [10] Investigating LSTM for Micro-Expression Recognition
    Bai, Mengjiong
    Goecke, Roland
    COMPANION PUBLICATON OF THE 2020 INTERNATIONAL CONFERENCE ON MULTIMODAL INTERACTION (ICMI '20 COMPANION), 2020, : 7 - 11