Bubble plumes and the Coanda effect

被引:25
作者
Freire, APS
Miranda, DD
Luz, LMS
França, GFM
机构
[1] Fed Univ Rio De Janeiro, Mech Engn Program, PEM COPPE UFRJ, BR-21945970 Rio De Janeiro, Brazil
[2] UFRJ, DEM, EE, Dept Mech Engn, BR-21945970 Rio De Janeiro, Brazil
关键词
bubble plume; Coanda effect; entrainment;
D O I
10.1016/S0301-9322(02)00031-9
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This paper describes the mean gas fraction distribution in the two-phase flow of a gas-liquid bubble plume set to develop adjacent either to a wall or to another bubble plume. When this happens, the plume exhibits a type of Coanda effect, bending either towards the wall or the other plume. The local mean gas fraction measurements are carried out using the electro-resistivity probe technique in an air-water system. The deflection angle of the plumes is shown to present a dependence on the modified Weber and Froude numbers of the bubbles. A Gaussian distribution for the mean gas fraction profile, observed to exist for axisymmetric single plumes, is shown not to occur in flow geometries where the Coanda effect is allowed to set in. The transition zone between the downstream flow where two Gaussian plumes are observed and the far upstream flow where the plumes are seen to merge onto a single plume is characterized. Photographs of the flow are shown to illustrate the phenomenon. Results are present for two- and three-dimensional mean gas fraction distributions. In addition, a simple theory based on integral methods is advanced for the prediction of the plume deflection angle; the theory considers a variable entrainment co-efficient. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1293 / 1310
页数:18
相关论文
共 22 条
[1]  
[Anonymous], 1963, AM I CHEM J
[2]  
BARBOSA JRJ, 1997, THESIS FEDERAL U RIO
[3]  
BARBOSA JRJ, 1996, P 6 BRAZ NAT M THERM, P1073
[4]   Phenomenological description of the axisymmetric air-bubble plume [J].
Brevik, I ;
Killie, R .
INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 1996, 22 (03) :535-549
[5]  
BREVIK I, 1977, J WATERW PORT C DIV, V103, P101
[6]   MEASUREMENT OF PHYSICAL CHARACTERISTICS OF BUBBLES IN GAS-LIQUID PLUMES .1. AN IMPROVED ELECTRORESISTIVITY PROBE TECHNIQUE [J].
CASTILLEJOS, AH ;
BRIMACOMBE, JK .
METALLURGICAL TRANSACTIONS B-PROCESS METALLURGY, 1987, 18 (04) :649-658
[7]   A GENERAL-MODEL FOR UNCONFINED BUBBLE PLUMES FROM EXTENDED SOURCES [J].
CHESTERS, AK ;
VANDOORN, M ;
GOOSSENS, LHJ .
INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 1980, 6 (06) :499-521
[8]  
Ditmars J. D., 1974, P INT C COAST ENG NE, P2209
[9]  
Fannelop T.K., 1980, NOR MARIT RES, V8, P17
[10]   DETECTION OF INSTANTANEOUS PHASE-CHANGES IN GAS-LIQUID MIXTURES [J].
HERRINGE, RA ;
DAVIS, MR .
JOURNAL OF PHYSICS E-SCIENTIFIC INSTRUMENTS, 1974, 7 (10) :807-812