Bounds for a constrained optimal stopping problem

被引:7
作者
Makasu, Cloud [1 ]
机构
[1] Univ Venda, Dept Math & Appl Math, ZA-0950 Thohoyandou, South Africa
关键词
Constrained optimal stopping problem; Lagrangian dual problem; Lagrangian multiplier;
D O I
10.1007/s11590-009-0127-8
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this short letter, we present an explicit upper bound for the optimal value of a bidimensional optimal stopping problem E-x,E-y [theta (x(tau), y(tau)) - integral(tau)(0) c(y(s))ds] over stopping times tau subject to a constraint E-x,E-y tau <= beta, where x(.) is a geometric Brownian motion coupled with an arbitrary diffusion process y(.), theta(., .) and c(.) are given positive, continuous functions and beta > 0 is a fixed constant. The present result is derived from a corresponding Lagrangian dual problem, and using a recent result of Makasu (Seq Anal 27:435-440, 2008). Examples are given to illustrate our main result.
引用
收藏
页码:499 / 505
页数:7
相关论文
共 5 条