Design and Microfabrication of Cooling Arm for Inertial Confinement Fusion Application

被引:0
作者
Xu, Bin [1 ,2 ]
Liu, Jing-quan [1 ]
Jiang, Shui-dong [1 ]
Tang, Gang [1 ,2 ]
Yan, Xiao-xiao [1 ,2 ]
Yang, Bin [1 ]
Chen, Xiang [1 ]
Yang, Chun-sheng [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Micro Nano Elect, Natl Key Lab Sci & Technol Micro Nano Fabricat, Shanghai 200240, Peoples R China
[2] Nanchang Inst Technol, Dept Mech & Elect Engn, Jiangxi Prov Key Lab Precis Dr & Control, Nanchang 330099, Peoples R China
基金
中国国家自然科学基金;
关键词
cooling arm; inertial confinement fusion; MEMS; temperature simulation; optimization design; IGNITION;
D O I
10.18494/SAM.2015.1146
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Inertial confinement fusion (ICF) mainly uses strong focus laser beams to irradiate the target to obtain sufficient energy. The ignition target is an essential factor for inducing a fusion reaction within a capsule. The cooling arm that connects the cooling source to the hohlraum is an important part of the ignition target, which is used to obtain an accurate and uniform temperature field for the deuterium-tritium ice pellet. To improve the temperature uniformity of the connecting surfaces between the cooling arm and the hohlraum, the cooling arm is designed to have a groove structure. On the basis of theoretical analysis and temperature simulation, the three-branch cooling arm was found to have a smaller temperature difference on the clamping surface and better mechanical strength than the cooling arm with fewer branches. Moreover, the fracture failure test shows that the fracture force of the three-branch cooling arm is 1.12 N, which is larger than that of the two-branch cooling arm. Because the smoothness of the connecting surface between the cooling arm and the hohlraum has a considerable effect on heat transfer, a KOH:isopropanol (IPA) solution is used to polish the rough deep reactive ion etching (DRIE) surface.
引用
收藏
页码:1091 / 1101
页数:11
相关论文
共 50 条
[31]   Inertial confinement fusion and prospects for power production [J].
CBEdwards ;
CNDanson .
HighPowerLaserScienceandEngineering, 2015, 3 (01) :36-43
[32]   Fast ignition of inertial confinement fusion targets [J].
S. Yu. Gus’kov .
Plasma Physics Reports, 2013, 39 :1-50
[33]   First Inertial Confinement Fusion Implosion Experiment [J].
Lan, Ke ;
Dong, Yunsong ;
Wu, Junfeng ;
Li, Zhichao ;
Chen, Yaohua ;
Cao, Hui ;
Hao, Liang ;
Li, Shu ;
Ren, Guoli ;
Jiang, Wei ;
Yin, Chuansheng ;
Sun, Chuankui ;
Chen, Zhongjing ;
Huang, Tianxuan ;
Xie, Xufei ;
Li, Sanwei ;
Miao, Wenyong ;
Hu, Xin ;
Tang, Qi ;
Song, Zifeng ;
Chen, Jiabin ;
Xiao, Yunqing ;
Che, Xingsen ;
Deng, Bo ;
Wang, Qiangqiang ;
Deng, Keli ;
Cao, Zhurong ;
Peng, Xiaoshi ;
Liu, Xiangming ;
He, Xiaoan ;
Yan, Ji ;
Pu, Yudong ;
Tu, Shaoyong ;
Yuan, Yongteng ;
Yu, Bo ;
Wang, Feng ;
Yang, Jiamin ;
Jiang, Shaoen ;
Gao, Lin ;
Xie, Jun ;
Zhang, Wei ;
Liu, Yiyang ;
Zhang, Zhanwen ;
Zhang, Haijun ;
He, Zhibing ;
Du, Kai ;
Wang, Liquan ;
Chen, Xu ;
Zhou, Wei ;
Huang, Xiaoxia .
PHYSICAL REVIEW LETTERS, 2021, 127 (24)
[34]   Modelling of Silicon in inertial confinement fusion conditions [J].
Hill, E. G. ;
Rose, S. J. .
HIGH ENERGY DENSITY PHYSICS, 2012, 8 (04) :307-312
[35]   Implosion hydrodynamics of an inertial confinement fusion target [J].
Saillard, Y .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE IV PHYSIQUE ASTROPHYSIQUE, 2000, 1 (06) :705-718
[36]   Hybrid target design for imprint mitigation in direct-drive inertial confinement fusion [J].
Ceurvorst, L. ;
Betti, R. ;
Casner, A. ;
Gopalaswamy, V ;
Bose, A. ;
Hu, S. X. ;
Campbell, E. M. ;
Regan, S. P. ;
McCoy, C. A. ;
Karasik, M. ;
Peebles, J. ;
Tabak, M. ;
Theobald, W. .
PHYSICAL REVIEW E, 2020, 101 (06)
[37]   Interactive tools designed to study mix in inertial confinement fusion implosions [J].
Welser-Sherrill, L. ;
Cooley, J. H. ;
Wilson, D. C. .
COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (06) :835-841
[38]   A Review of Equation-of-State Models for Inertial Confinement Fusion Materials [J].
Gaffney, J. A. ;
Hu, S. X. ;
Arnault, P. ;
Becker, A. ;
Benedict, L. X. ;
Boehly, T. R. ;
Celliers, P. M. ;
Ceperley, D. M. ;
Certik, O. ;
Clerouin, J. ;
Collins, G. W. ;
Collins, L. A. ;
Danel, J. -F. ;
Desbiens, N. ;
Dharma-wardana, M. W. C. ;
Ding, Y. H. ;
Fernandez-Panella, A. ;
Gregor, M. C. ;
Grabowski, P. E. ;
Hamel, S. ;
Hansen, S. B. ;
Harbour, L. ;
He, X. T. ;
Johnson, D. D. ;
Kang, W. ;
Karasiev, V. V. ;
Kazandjian, L. ;
Knudson, M. D. ;
Ogitsu, T. ;
Pierleoni, C. ;
Piron, R. ;
Redmer, R. ;
Robert, G. ;
Saumon, D. ;
Shamp, A. ;
Sjostrom, T. ;
Smirnov, A. V. ;
Starrett, C. E. ;
Sterne, P. A. ;
Wardlow, A. ;
Whitley, H. D. ;
Wilson, B. ;
Zhang, P. ;
Zurek, E. .
HIGH ENERGY DENSITY PHYSICS, 2018, 28 :7-24
[39]   Theoretical Investigation of Gas Filling and Leaking in Inertial Confinement Fusion Hohlraum [J].
Yu, Cheng ;
Wu, Suchen ;
Yang, Weibo .
SUSTAINABILITY, 2018, 10 (10)
[40]   Burn regimes in the hydrodynamic scaling of perturbed inertial confinement fusion hotspots [J].
Tong, J. K. ;
McGlinchey, K. ;
Appelbe, B. D. ;
Walsh, C. A. ;
Crilly, A. J. ;
Chittenden, J. P. .
NUCLEAR FUSION, 2019, 59 (08)