Visibility Graph from Adaptive Optimal Kernel Time-Frequency Representation for Classification of Epileptiform EEG

被引:165
作者
Gao, Zhong-Ke [1 ]
Cai, Qing [1 ]
Yang, Yu-Xuan [1 ]
Dong, Na [1 ]
Zhang, Shan-Shan [1 ]
机构
[1] Tianjin Univ, Sch Elect Engn & Automat, 92 Weijin Rd, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Adaptive optimal kernel complex network; EEG; visibility graph; seizure; FUZZY SYNCHRONIZATION LIKELIHOOD; NEURAL NETWORK METHODOLOGY; SEIZURE DETECTION; PERMUTATION ENTROPY; COMPLEX NETWORK; FEATURE-EXTRACTION; EPILEPSY; DIAGNOSIS; SERIES; SIGNALS;
D O I
10.1142/S0129065717500058
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Detecting epileptic seizure from EEG signals constitutes a challenging problem of significant importance. Combining adaptive optimal kernel time-frequency representation and visibility graph, we develop a novel method for detecting epileptic seizure from EEG signals. We construct complex networks from EEG signals recorded from healthy subjects and epilepsy patients. Then we employ clustering coefficient, clustering coefficient entropy and average degree to characterize the topological structure of the networks generated from different brain states. In addition, we combine energy deviation and network measures to recognize healthy subjects and epilepsy patients, and further distinguish brain states during seizure free interval and epileptic seizures. Three different experiments are designed to evaluate the performance of our method. The results suggest that our method allows a high-accurate classification of epileptiform EEG signals.
引用
收藏
页数:12
相关论文
共 95 条
[1]   Application of entropies for automated diagnosis of epilepsy using EEG signals: A review [J].
Acharya, U. Rajendra ;
Fujita, H. ;
Sudarshan, Vidya K. ;
Bhat, Shreya ;
Koh, Joel E. W. .
KNOWLEDGE-BASED SYSTEMS, 2015, 88 :85-96
[2]   Computer-Aided Diagnosis of Depression Using EEG Signals [J].
Acharya, U. Rajendra ;
Sudarshan, Vidya K. ;
Adeli, Hojjat ;
Santhosh, Jayasree ;
Koh, Joel E. W. ;
Adeli, Amir .
EUROPEAN NEUROLOGY, 2015, 73 (5-6) :329-336
[3]   AUTOMATED DIAGNOSIS OF EPILEPSY USING CWT, HOS AND TEXTURE PARAMETERS [J].
Acharya, U. Rajendra ;
Yanti, Ratna ;
Wei, Zheng Jia ;
Krishnan, M. Muthu Rama ;
Hong, Tan Jen ;
Martis, Roshan Joy ;
Min, Lim Choo .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2013, 23 (03)
[4]  
Adeli H, 2010, AUTOMATED EEG-BASED DIAGNOSIS OF NEUROLOGICAL DISORDERS: INVENTING THE FUTURE OF NEUROLOGY, P1
[5]   Analysis of EEG records in an epileptic patient using wavelet transform [J].
Adeli, H ;
Zhou, Z ;
Dadmehr, N .
JOURNAL OF NEUROSCIENCE METHODS, 2003, 123 (01) :69-87
[6]   A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy [J].
Adeli, Hojjat ;
Ghosh-Dastidar, Samanwoy ;
Dadmehr, Nahid .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2007, 54 (02) :205-211
[7]   Complexity of functional connectivity networks in mild cognitive impairment subjects during a working memory task [J].
Ahmadlou, Mehran ;
Adeli, Anahita ;
Bajo, Ricardo ;
Adeli, Hojjat .
CLINICAL NEUROPHYSIOLOGY, 2014, 125 (04) :694-702
[8]   Spatiotemporal Analysis of Relative Convergence of EEGs Reveals Differences Between Brain Dynamics of Depressive Women and Men [J].
Ahmadlou, Mehran ;
Adeli, Hojjat ;
Adeli, Amir .
CLINICAL EEG AND NEUROSCIENCE, 2013, 44 (03) :175-181
[9]   Fuzzy Synchronization Likelihood-wavelet methodology for diagnosis of autism spectrum disorder [J].
Ahmadlou, Mehran ;
Adeli, Hojjat ;
Adeli, Amir .
JOURNAL OF NEUROSCIENCE METHODS, 2012, 211 (02) :203-209
[10]   Improved visibility graph fractality with application for the diagnosis of Autism Spectrum Disorder [J].
Ahmadlou, Mehran ;
Adeli, Hojjat ;
Adeli, Amir .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (20) :4720-4726