Dynamical behavior of a stochastic epidemic model for cholera

被引:34
作者
Liu, Qun [1 ]
Jiang, Daqing [1 ,2 ,3 ]
Hayat, Tasawar [2 ,4 ]
Alsaedi, Ahmed [2 ]
机构
[1] Northeast Normal Univ, Sch Math & Stat, Key Lab Appl Stat MOE, Changchun 130024, Jilin, Peoples R China
[2] King Abdulaziz Univ, Nonlinear Anal & Appl Math NAAM Res Grp, Jeddah, Saudi Arabia
[3] China Univ Petr, Coll Sci, Qingdao 266580, Shandong, Peoples R China
[4] Quaid I Azam Univ, Dept Math, Islamabad 45320, Pakistan
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 2019年 / 356卷 / 13期
关键词
STATIONARY DISTRIBUTION; INFECTIOUS-DISEASES; GLOBAL STABILITY; CLIMATE-CHANGE; HYPERINFECTIVITY; EXTINCTION;
D O I
10.1016/j.jfranklin.2018.11.056
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a stochastic epidemic model for cholera is proposed and investigated. Firstly, we establish sufficient conditions for extinction of the disease. Then we establish sufficient criteria for the existence of a unique ergodic stationary distribution of the positive solutions to the model by constructing a suitable stochastic Lyapunov function. The existence of an ergodic stationary distribution implies that all the individuals can be coexistent in the long run. Finally, some examples together with numerical simulations are introduced to illustrate our theoretical results. (C) 2019 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:7486 / 7514
页数:29
相关论文
共 40 条
[1]  
Allen Linda J S, 2017, Infect Dis Model, V2, P128, DOI 10.1016/j.idm.2017.03.001
[2]   Climate Change and Infectious Diseases: From Evidence to a Predictive Framework [J].
Altizer, Sonia ;
Ostfeld, Richard S. ;
Johnson, Pieter T. J. ;
Kutz, Susan ;
Harvell, C. Drew .
SCIENCE, 2013, 341 (6145) :514-519
[3]  
[Anonymous], 1996, STOCHASTIC CALCULUS
[4]  
Bainov DD., 1993, IMPULSIVE DIFFERENTI, DOI DOI 10.1201/9780203751206
[5]  
Berman A., 1979, NONNEGATIVE MATRICES
[6]   A STOCHASTIC EPIDEMIC MODEL INCORPORATING MEDIA COVERAGE [J].
Cai, Yongli ;
Kang, Yun ;
Banerjee, Malay ;
Wang, Weiming .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2016, 14 (04) :893-910
[7]   A stochastic SIRS epidemic model with infectious force under intervention strategies [J].
Cai, Yongli ;
Kang, Yun ;
Banerjee, Malay ;
Wang, Weiming .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (12) :7463-7502
[8]  
CAPASSO V, 1979, REV EPIDEMIOL SANTE, V27, P121
[9]  
Capone F, 2015, J MATH BIOL, V71, P1107, DOI 10.1007/s00285-014-0849-9
[10]  
Codeço CT, 2001, BMC INFECT DIS, V1, DOI 10.1186/1471-2334-1-1