Coverings of curves with asymptotically many rational points

被引:8
作者
Li, WCW [1 ]
Maharaj, H
机构
[1] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
curves; class field towers; Drinfeld modules; narrow ray class fields;
D O I
10.1006/jnth.2002.2804
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Ihara defined the quantity A(q), which is the lim sup as g approaches infinity of the ratio N-q(g)/g, where N-q(g) is the maximum number of rational points a curve of genus g defined over a finite field F-q may have. A(q) is of great relevance for applications to algebraic-geometric codes. It is known that A(q)less than or equal torootq - 1 and equality holds when q is a square. By constructing class field towers with good parameters, in this paper we present improvements of lower bounds of A(q) for q an odd power of a prime. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:232 / 256
页数:25
相关论文
共 22 条
[1]   On the asymptotic behaviour of some towers of function fields over finite fields [J].
Garcia, A ;
Stichtenoth, H .
JOURNAL OF NUMBER THEORY, 1996, 61 (02) :248-273
[2]   A TOWER OF ARTIN-SCHREIER EXTENSIONS OF FUNCTION-FIELDS ATTAINING THE DRINFELD-VLADUT BOUND [J].
GARCIA, A ;
STICHTENOTH, H .
INVENTIONES MATHEMATICAE, 1995, 121 (01) :211-222
[3]   ELEMENTARY ABELIAN P-EXTENSIONS OF ALGEBRAIC FUNCTION-FIELDS [J].
GARCIA, A ;
STICHTENOTH, H .
MANUSCRIPTA MATHEMATICA, 1991, 72 (01) :67-79
[4]  
Goss David, 1996, BASIC STRUCTURES FUN
[5]  
HAYES DR, 1992, OHIO ST U M, V2, P1
[6]  
Ihara Y., 1981, J FS TOKYO, V28, P721
[7]  
KRESCH A, 1999, MATHAG9912069
[8]  
LI WCW, 1999, P INT C COMP COMB AL
[9]   Towers of global function fields with asymptotically many rational places and an improvement on the Gilbert-Varshamov bound [J].
Niederreiter, H ;
Xing, CP .
MATHEMATISCHE NACHRICHTEN, 1998, 195 :171-186
[10]  
Niederreiter H, 1997, ACTA ARITH, V81, P81