Timescale-dependent AMOC-AMO relationship in an earth system model of intermediate complexity

被引:8
作者
Kim, Hyo-Jeong [1 ]
An, Soon-Il [1 ]
Kim, Daehyun [2 ]
机构
[1] Yonsei Univ, Dept Atmospher Sci, Irreversible Climate Change Res Ctr, Seoul, South Korea
[2] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA
基金
新加坡国家研究基金会;
关键词
Atlantic meridional overturning circulation; Atlantic multi-decadal oscillation; multiple timescales; MERIDIONAL OVERTURNING CIRCULATION; ATLANTIC MULTIDECADAL OSCILLATION; SEA-SURFACE TEMPERATURE; GREAT SALINITY ANOMALIES; THERMOHALINE CIRCULATION; INTERDECADAL VARIABILITY; CLIMATE VARIABILITY; OCEAN CIRCULATION; FLUX; PREDICTABILITY;
D O I
10.1002/joc.6926
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The relationship between Atlantic multi-decadal oscillation (AMO) and Atlantic meridional overturning circulation (AMOC) is examined with respect to two (inter- and multi-decadal) different timescales using a long-term unforced simulation of an earth system model of intermediate complexity. In the inter-decadal timescale, the AMO and the AMOC establish a self-sustaining oscillatory mode; the AMOC induces the positive AMO through meridional heat transport (MHT), but with the time delay of approximately 7 years as the AMOC anomalies propagate southward over time within the Atlantic basin. After then, the AMO reduces the density in the main sinking region and brings the negative phase of the AMOC, which results in the rest half of the cycle. On the other hand, in the multi-decadal timescale, the AMO and the AMOC are almost in phase because the AMOC is spatially stationary, resulting in a pan-Atlantic surface warming. In addition, the Arctic-originated density fluctuations are required for the multi-decadal AMOC to switch its phase. The results obtained in this study suggest that timescale dependency should be considered when investigating the AMOC-AMO relationship.
引用
收藏
页码:E3298 / E3306
页数:9
相关论文
共 54 条
[1]   A multi-model comparison of Atlantic multidecadal variability [J].
Ba, Jin ;
Keenlyside, Noel S. ;
Latif, Mojib ;
Park, Wonsun ;
Ding, Hui ;
Lohmann, Katja ;
Mignot, Juliette ;
Menary, Matthew ;
Ottera, Odd Helge ;
Wouters, Bert ;
Salas y Melia, David ;
Oka, Akira ;
Bellucci, Alessio ;
Volodin, Evgeny .
CLIMATE DYNAMICS, 2014, 43 (9-10) :2333-2348
[2]   Great Salinity Anomalies in the North Atlantic [J].
Belkin, IM ;
Levitus, S ;
Antonov, J ;
Malmberg, SA .
PROGRESS IN OCEANOGRAPHY, 1998, 41 (01) :1-68
[3]   A continuous climate-vegetation classification for use in climate-biosphere studies [J].
Brovkin, V ;
Ganopolski, A ;
Svirezhev, Y .
ECOLOGICAL MODELLING, 1997, 101 (2-3) :251-261
[4]   Low-Pass Filtering, Heat Flux, and Atlantic Multidecadal Variability [J].
Cane, Mark A. ;
Clement, Amy C. ;
Murphy, Lisa N. ;
Bellomo, Katinka .
JOURNAL OF CLIMATE, 2017, 30 (18) :7529-7553
[5]   A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA) [J].
Carton, James A. ;
Giese, Benjamin S. .
MONTHLY WEATHER REVIEW, 2008, 136 (08) :2999-3017
[6]   Reduced interdecadal variability of Atlantic Meridional Overturning Circulation under global warming [J].
Cheng, Jun ;
Liu, Zhengyu ;
Zhang, Shaoqing ;
Liu, Wei ;
Dong, Lina ;
Liu, Peng ;
Li, Hongli .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (12) :3175-3178
[7]   The Atlantic Multidecadal Oscillation without a role for ocean circulation [J].
Clement, Amy ;
Bellomo, Katinka ;
Murphy, Lisa N. ;
Cane, Mark A. ;
Mauritsen, Thorsten ;
Raedel, Gaby ;
Stevens, Bjorn .
SCIENCE, 2015, 350 (6258) :320-+
[8]   Atlantic thermohaline circulation in a coupled general circulation model: Unforced variations versus forced changes [J].
Dai, A ;
Hu, A ;
Meehl, GA ;
Washington, WM ;
Strand, WG .
JOURNAL OF CLIMATE, 2005, 18 (16) :3270-3293
[9]  
Delworth TL, 2000, J CLIMATE, V13, P1481, DOI 10.1175/1520-0442(2000)013<1481:MTCVDB>2.0.CO
[10]  
2