On the edge-version atom-bond connectivity and geometric arithmetic indices of certain graph operations

被引:26
作者
Gao, Wei [1 ]
Farahani, Mohammad Reza [2 ]
Wang, Shaohui [3 ]
Husin, Mohamad Nazri [4 ]
机构
[1] Yunnan Normal Univ, Sch Informat Sci & Technol, Kunming 650500, Peoples R China
[2] Iran Univ Sci & Technol, Dept Appl Math, Tehran 16844, Iran
[3] Adelphi Univ, Dept Math & Comp Sci, Garden City, NY 11530 USA
[4] Univ Malaysia Terengganu, Sch Informat & Appl Math, Kuala Lumpur 21030, Terengganu, Malaysia
关键词
Atom-bond connectivity index; Geometric arithmetic index; Line graph; Joint graph; WIENER POLARITY INDEX; ABC INDEX; TREES;
D O I
10.1016/j.amc.2017.02.046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let d(L(G))(e) be the degree of an edge e in line graph L(G) of a graph G. The edge versions of atom-bond connectivity (ABC(e)) and geometric arithmetic (GA(e)) indices of G are defined as Sigma(ef is an element of E(L(G)))root(d(L(G)) (e) + d(L(G))(f)-2/d(L(G)) (e) x d(L(G)) (f) and GA(e) (G) = Sigma(ef is an element of E(L(G))) 2 root d(L(G))(e)d(L(G))(f)/d(L(G))(e)+ d(L(G))(f). In this paper, we study the ABC(e) and GA(e) indices for joint graphs and certain graph operations. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:11 / 17
页数:7
相关论文
共 26 条
[1]  
Asadpour J, 2011, OPTOELECTRON ADV MAT, V5, P769
[2]  
Bianchi M, 2016, MATCH-COMMUN MATH CO, V76, P117
[3]  
Das KC, 2016, MATCH-COMMUN MATH CO, V76, P159
[4]  
Estrada E, 1998, INDIAN J CHEM A, V37, P849
[5]  
Farahani M.R., 2012, ACTA U APULENSIS, V36, P277
[6]   A new geometric-arithmetic index [J].
Fath-Tabar, Gholamhossein ;
Furtula, Boris ;
Gutman, Ivan .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2010, 47 (01) :477-486
[7]   Computer search for trees with minimal ABC index [J].
Furtula, Boris ;
Gutman, Ivan ;
Ivanovic, Milos ;
Vukicevic, Damir .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (02) :767-772
[8]   The fifth geometric-arithmetic index of bridge graph and carbon nanocones [J].
Gao, W. ;
Wang, W. F. .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2017, 23 (1-2) :100-109
[9]  
Gao W., 2016, APPL MATH NONLIN SCI, V1, P99, DOI [DOI 10.21042/AMNS.2016.1.00009, 10.21042/AMNS.2016.1.00009]
[10]   The eccentric connectivity polynomial of two classes of nanotubes [J].
Gao, Wei ;
Wang, Weifan .
CHAOS SOLITONS & FRACTALS, 2016, 89 :290-294