Small deviations for Gaussian Markov processes under the sup-norm

被引:11
作者
Li, WV [1 ]
机构
[1] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
基金
美国国家科学基金会;
关键词
small ball problem; Gaussian Markov processes; Brownian motion; weighted norms;
D O I
10.1023/A:1021771503265
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let {X(t);0 less than or equal to t less than or equal to 1} be a real-valued continuous Gaussian Markov process with mean zero and covariance sigma(s, t) = EX(s) X(t) not equal 0 for 0 < s, t < 1. It is known that we can write sigma(s, t) = G(min(s, t)) H(max(s, t)) with G > 0, H > 0 and G/H nondecreasing on the interval (0, 1). We show that lim(epsilon-->0) epsilon(2) log P((0 < t less than or equal to 1) sup \X(t)\ < epsilon) = - (pi(2)/8) integral(0)(1) (G'H - H'G) dt In the critical case, i.e. this integral is infinite; we provide the correct rate (up to a constant) for log P(sup(0 < t less than or equal to 1) \X(t)\ < epsilon) as epsilon --> 0 under regularity conditions.
引用
收藏
页码:971 / 984
页数:14
相关论文
共 18 条
[1]  
[Anonymous], LECT NOTES MATH
[2]  
BERTHET P, 1997, SMALL BALL ESTIMATES
[3]  
BORISOV IS, 1982, THEOR PROBAB APPL, V27, P863
[4]  
CSAKI E, 1994, P 4 IMSIBAC VSP UTR, P247
[5]   Metric entropy of the integration operator and small ball probabilities for the Brownian sheet [J].
Dunker, T ;
Kuhn, T ;
Lifshits, M ;
Linde, W .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (03) :347-352
[6]  
Feller W., 1967, INTRO PROBABILITY TH, VII
[7]  
Ito K., 1965, DIFFUSION PROCESSES
[8]   Small ball probabilities for Gaussian processes with stationary increments under Holder norms [J].
Kuelbs, J ;
Li, WV ;
Shao, QM .
JOURNAL OF THEORETICAL PROBABILITY, 1995, 8 (02) :361-386
[9]   METRIC ENTROPY AND THE SMALL BALL PROBLEM FOR GAUSSIAN MEASURES [J].
KUELBS, J ;
LI, WV .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 116 (01) :133-157
[10]  
Kuelbs J, 1994, Ann Probab, V22, P1879