A non-asymptotic homogenization theory for periodic electromagnetic structures

被引:18
作者
Tsukerman, Igor [1 ]
Markel, Vadim A. [2 ,3 ,4 ]
机构
[1] Univ Akron, Dept Elect & Comp Engn, Akron, OH 44325 USA
[2] Univ Penn, Dept Radiol, Philadelphia, PA 19104 USA
[3] Univ Penn, Dept Bioengn, Philadelphia, PA 19104 USA
[4] Univ Penn, Grad Grp Appl Math & Computat Sci, Philadelphia, PA 19104 USA
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2014年 / 470卷 / 2168期
基金
美国国家科学基金会;
关键词
homogenization; metamaterials; effective medium; Bloch modes; Trefftz approximation; HIGH-FREQUENCY HOMOGENIZATION; PHOTONIC CRYSTALS; INTERPOLATION; METAMATERIALS; REFRACTION;
D O I
10.1098/rspa.2014.0245
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Homogenization of electromagnetic periodic composites is treated as a two-scale problem and solved by approximating the fields on both scales with eigenmodes that satisfy Maxwell's equations and boundary conditions as accurately as possible. Built into this homogenization methodology is an error indicator whose value characterizes the accuracy of homogenization. The proposed theory allows one to define not only bulk, but also position-dependent material parameters (e. g. in proximity to a physical boundary) and to quantify the trade-off between the accuracy of homogenization and its range of applicability to various illumination conditions.
引用
收藏
页数:19
相关论文
共 31 条
[1]  
[Anonymous], 2011, ASYMPTOTIC ANAL PERI, DOI DOI 10.1090/CHEL/374
[2]   Optical tomography: forward and inverse problems [J].
Arridge, Simon R. ;
Schotland, John C. .
INVERSE PROBLEMS, 2009, 25 (12)
[3]   Optical tomography in medical imaging [J].
Arridge, SR .
INVERSE PROBLEMS, 1999, 15 (02) :R41-R93
[4]  
Chen XD, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.016608
[5]   Bloch dispersion and high frequency homogenization for separable doubly-periodic structures [J].
Craster, R. V. ;
Kaplunov, J. ;
Nolde, E. ;
Guenneau, S. .
WAVE MOTION, 2012, 49 (02) :333-346
[6]   High-frequency homogenization for periodic media [J].
Craster, R. V. ;
Kaplunov, J. ;
Pichugin, A. V. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 466 (2120) :2341-2362
[7]   Anomalous homogeneous behaviour of metallic photonic crystals [J].
Felbacq, D .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (04) :815-821
[8]   Graphical retrieval method for orthorhombic anisotropic materials [J].
Feng, Simin .
OPTICS EXPRESS, 2010, 18 (16) :17009-17019
[9]   Refraction and rightness in photonic crystals [J].
Gajic, R ;
Meisels, R ;
Kuchar, F ;
Hingerl, K .
OPTICS EXPRESS, 2005, 13 (21) :8596-8605
[10]  
Herrera I, 2000, NUMER METH PART D E, V16, P561, DOI 10.1002/1098-2426(200011)16:6<561::AID-NUM4>3.0.CO