How cold can you get in space? Quantum physics at cryogenic temperatures in space

被引:14
作者
Hechenblaikner, Gerald [1 ]
Hufgard, Fabian [1 ]
Burkhardt, Johannes [1 ]
Kiesel, Nikolai [2 ]
Johann, Ulrich [1 ]
Aspelmeyer, Markus [2 ]
Kaltenbaek, Rainer [2 ]
机构
[1] EADS Astrium, D-88039 Friedrichshafen, Germany
[2] Univ Vienna, Fac Phys, Vienna Ctr Quantum Sci & Technol, Vienna, Austria
来源
NEW JOURNAL OF PHYSICS | 2014年 / 16卷
基金
奥地利科学基金会; 欧洲研究理事会;
关键词
SUPERPOSITION; DYNAMICS;
D O I
10.1088/1367-2630/16/1/013058
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Although it is often believed that the coldness of space is ideally suited for performing measurements at cryogenic temperatures, this must be regarded with caution for two reasons: firstly, the sensitive instrument must be completely shielded from the strong solar radiation and therefore, e. g., either be placed inside a satellite or externally on the satellite's shaded side. Secondly, any platform hosting such an experiment in space generally provides an environment close to room temperature for the accommodated equipment. To obtain cryogenic temperatures without active cooling, one must isolate the instrument from radiative and conductive heat exchange with the platform as well as possible. We perform analyses on the limits of this passive cooling method for a recently proposed experiment to observe the decoherence of quantum superpositions of massive objects. In this context, we obtain temperatures of 27K for the optical bench and 16K for the critical experimental volume. Our analyses and conclusions can readily be applied to similar science experiments requiring a cryogenic environment in space.
引用
收藏
页数:15
相关论文
共 40 条
  • [1] Wave-particle duality of C60 molecules
    Arndt, M
    Nairz, O
    Vos-Andreae, J
    Keller, C
    van der Zouw, G
    Zeilinger, A
    [J]. NATURE, 1999, 401 (6754) : 680 - 682
  • [2] Doppler Cooling a Microsphere
    Barker, P. F.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 105 (07)
  • [3] From HERSCHEL to GAIA, 3-meter class SiC space optics
    Bougoin, Michel
    Lavenac, Jerome
    [J]. OPTICAL MANUFACTURING AND TESTING IX, 2011, 8126
  • [4] Observing the progressive decoherence of the ''meter'' in a quantum measurement
    Brune, M
    Hagley, E
    Dreyer, J
    Maitre, X
    Maali, A
    Wunderlich, C
    Raimond, JM
    Haroche, S
    [J]. PHYSICAL REVIEW LETTERS, 1996, 77 (24) : 4887 - 4890
  • [5] RADIATIVELY COOLED TELESCOPES - A NEW DIRECTION FOR INFRARED SPACE ASTRONOMY
    DAVIES, JK
    HAWARDEN, TG
    MOUNTAIN, CM
    [J]. ACTA ASTRONAUTICA, 1991, 25 (04) : 223 - 228
  • [6] GRAVITATION AND QUANTUM-MECHANICAL LOCALIZATION OF MACRO-OBJECTS
    DIOSI, L
    [J]. PHYSICS LETTERS A, 1984, 105 (4-5) : 199 - 202
  • [7] Hydroxide-catalysis bonding for stable optical systems for space
    Elliffe, EJ
    Bogenstahl, J
    Deshpande, A
    Hough, J
    Killow, C
    Reid, S
    Robertson, D
    Rowan, S
    Ward, H
    Cagnoli, G
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (10) : S257 - S267
  • [8] SEARCH FOR VIOLATIONS OF QUANTUM-MECHANICS
    ELLIS, J
    HAGELIN, JS
    NANOPOULOS, DV
    SREDNICKI, M
    [J]. NUCLEAR PHYSICS B, 1984, 241 (02) : 381 - 405
  • [9] Engines UK, 2010, TECHNICAL REPORT
  • [10] Gravity Probe B: Final Results of a Space Experiment to Test General Relativity
    Everitt, C. W. F.
    DeBra, D. B.
    Parkinson, B. W.
    Turneaure, J. P.
    Conklin, J. W.
    Heifetz, M. I.
    Keiser, G. M.
    Silbergleit, A. S.
    Holmes, T.
    Kolodziejczak, J.
    Al-Meshari, M.
    Mester, J. C.
    Muhlfelder, B.
    Solomonik, V. G.
    Stahl, K.
    Worden, P. W., Jr.
    Bencze, W.
    Buchman, S.
    Clarke, B.
    Al-Jadaan, A.
    Al-Jibreen, H.
    Li, J.
    Lipa, J. A.
    Lockhart, J. M.
    Al-Suwaidan, B.
    Taber, M.
    Wang, S.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 106 (22)