Sommerfeld enhancement: general results from field theory diagrams

被引:109
作者
Iengo, Roberto [1 ,2 ]
机构
[1] Int Sch Adv Studies SISSA, I-34013 Trieste, Italy
[2] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy
关键词
Cosmology of Theories beyond the SM; Nonperturbative Effects;
D O I
10.1088/1126-6708/2009/05/024
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Assuming that two incoming annihilating particles interact by exchanging a generally massive attractive vector ( or scalar) boson, we find, by taking the non-relativistic limit of the field theory ladder diagrams, that the complete annihilation amplitude A is equal to: the convolution of a solution of the Schroedinger equation ( including the attractive potential) with the Fourier transform of the bare (i.e. ignoring the attraction) annihilation amplitude A(0). The main novelty is that A(0) can be completely arbitrary. For a Coulomb potential we find analytically the enhancement for the l-partial-wave cross-section, e. g. the P wave enhancement 2 pi(alpha/v)(3) (v relative velocity), for a Yukawa potential we describe a simple algorithm and give numerical results showing an important P wave enhancement with a resonant pattern.
引用
收藏
页数:15
相关论文
共 11 条
[1]   A theory of dark matter [J].
Arkani-Hamed, Nima ;
Finkbeiner, Douglas P. ;
Slatyer, Tracy R. ;
Weiner, Neal .
PHYSICAL REVIEW D, 2009, 79 (01)
[2]  
CHEN F, ARXIV09014327
[3]   Cosmology and astrophysics of minimal dark matter [J].
Cirelli, Marco ;
Strumia, Alessandro ;
Tamburini, Matteo .
NUCLEAR PHYSICS B, 2007, 787 (1-2) :152-175
[4]   Nonperturbative effect on dark matter annihilation and gamma ray signature from the galactic center [J].
Hisano, J ;
Matsumoto, S ;
Nojiri, MM ;
Saito, O .
PHYSICAL REVIEW D, 2005, 71 (06) :1-25
[5]  
Itzykson C., 1985, Quantum Field Theory
[6]  
Landau L.D., 1988, Quantum Mechanics
[7]  
LATTANZI M, ARXIV08120360, P84017
[8]   Heavy dark matter through the Higgs portal [J].
March-Russell, John ;
West, Stephen M. ;
Cumberbatch, Daniel ;
Hooper, Dan .
JOURNAL OF HIGH ENERGY PHYSICS, 2008, (07)
[9]  
Peskin M. H., 1995, An Introduction to Quantum Field Theory
[10]  
ROBERTSON B, ARXIV09020362