Stochastic finite element method based on point estimate and Karhunen-Loeve expansion

被引:19
作者
Liu, Xiang [1 ]
Jiang, Lizhong [1 ,2 ]
Xiang, Ping [1 ,2 ,4 ,5 ]
Zhou, Wangbao [1 ,2 ]
Lai, Zhipeng [1 ,2 ]
Feng, Yulin [3 ]
机构
[1] Cent South Univ, Sch Civil Engn, Changsha 410075, Hunan, Peoples R China
[2] Natl Engn Lab High Speed Railway Construct, Changsha, Peoples R China
[3] East China Jiaotong Univ, Sch Civil Engn & Architecture, Nanchang 330013, Jiangxi, Peoples R China
[4] China Univ Min & Technol, Jiangsu Key Lab Environm Impact & Struct Safety E, Xuzhou, Jiangsu, Peoples R China
[5] Engn Res Ctr Seism Disaster Prevent & Engn Geol D, Nanchang, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Stochastic finite element method; Stochastic field; Karhunen– Loé ve expansion; Point estimate method; RANDOM-FIELDS; PARAMETERS; INTEGRATION; VIBRATION; BEAMS; MODEL;
D O I
10.1007/s00419-020-01819-8
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The present study proposes a new stochastic finite element method. The Karhunen-Loeve expansion is utilized to discretize the stochastic field, while the point estimate method is applied for calculating the random response of the structure. Two illustrative examples, including finite element models with one-dimensional and two-dimensional stochastic fields, are investigated to demonstrate the accuracy and efficiency of the proposed method. Furthermore, two classical finite element analysis methods are used to validate the results. It is proved that the proposed method can model both the one-dimensional and the two-dimensional stochastic finite element problems accurately and efficiently.
引用
收藏
页码:1257 / 1271
页数:15
相关论文
共 50 条
  • [31] Application of the stochastic finite element method in welding simulation
    Li, Zheng
    Launert, Benjamin
    Pasternak, Hartmut
    WELDING IN THE WORLD, 2018, 62 (05) : 905 - 912
  • [32] On generalized stochastic perturbation-based finite element method
    Kaminski, M
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2006, 22 (01): : 23 - 31
  • [33] Structure reliability analysis based on stochastic finite element method
    Zhao, Jun
    Cao, Xia
    Jin, Linzhi
    ISISS 2005: Innovation & Sustainability of Structures, Vol 1-3, 2005, : 875 - 881
  • [34] Random field of homogeneous and multi-material structures by the smoothed finite element method and Karhunen-Lo`eve expansion
    Cao, Lixiong
    Han, Jiaxing
    Wu, Shaowei
    Liu, Guirong
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2024, 165
  • [35] Reliability Analysis of Frame Structure Based on Stochastic Finite Element Method
    Cao, Shu Wen
    Zhao, Dong
    Liu, Jun Qing
    PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION (ICMS2009), VOL 3, 2009, : 189 - 193
  • [36] Generalized perturbation-based stochastic finite element method in elastostatics
    Kaminski, Marcin
    COMPUTERS & STRUCTURES, 2007, 85 (10) : 586 - 594
  • [37] Practical Application of the Stochastic Finite Element Method
    José David Arregui-Mena
    Lee Margetts
    Paul M. Mummery
    Archives of Computational Methods in Engineering, 2016, 23 : 171 - 190
  • [38] ITERATIVE SOLVERS FOR THE STOCHASTIC FINITE ELEMENT METHOD
    Rosseel, Eveline
    Vandewalle, Stefan
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (01) : 372 - 397
  • [39] Computational aspects of the stochastic finite element method
    Eiermann, Michael
    Ernst, Oliver G.
    Ullmann, Elisabeth
    COMPUTING AND VISUALIZATION IN SCIENCE, 2007, 10 (01) : 3 - 15
  • [40] A stochastic scaled boundary finite element method
    Long, X. Y.
    Jiang, C.
    Yang, C.
    Han, X.
    Gao, W.
    Liu, J.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 308 : 23 - 46