Stochastic finite element method based on point estimate and Karhunen-Loeve expansion

被引:19
|
作者
Liu, Xiang [1 ]
Jiang, Lizhong [1 ,2 ]
Xiang, Ping [1 ,2 ,4 ,5 ]
Zhou, Wangbao [1 ,2 ]
Lai, Zhipeng [1 ,2 ]
Feng, Yulin [3 ]
机构
[1] Cent South Univ, Sch Civil Engn, Changsha 410075, Hunan, Peoples R China
[2] Natl Engn Lab High Speed Railway Construct, Changsha, Peoples R China
[3] East China Jiaotong Univ, Sch Civil Engn & Architecture, Nanchang 330013, Jiangxi, Peoples R China
[4] China Univ Min & Technol, Jiangsu Key Lab Environm Impact & Struct Safety E, Xuzhou, Jiangsu, Peoples R China
[5] Engn Res Ctr Seism Disaster Prevent & Engn Geol D, Nanchang, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Stochastic finite element method; Stochastic field; Karhunen– Loé ve expansion; Point estimate method; RANDOM-FIELDS; PARAMETERS; INTEGRATION; VIBRATION; BEAMS; MODEL;
D O I
10.1007/s00419-020-01819-8
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The present study proposes a new stochastic finite element method. The Karhunen-Loeve expansion is utilized to discretize the stochastic field, while the point estimate method is applied for calculating the random response of the structure. Two illustrative examples, including finite element models with one-dimensional and two-dimensional stochastic fields, are investigated to demonstrate the accuracy and efficiency of the proposed method. Furthermore, two classical finite element analysis methods are used to validate the results. It is proved that the proposed method can model both the one-dimensional and the two-dimensional stochastic finite element problems accurately and efficiently.
引用
收藏
页码:1257 / 1271
页数:15
相关论文
共 50 条
  • [11] Karhunen-Loeve expansion for multi-correlated stochastic processes
    Cho, H.
    Venturi, D.
    Karniadakis, G. E.
    PROBABILISTIC ENGINEERING MECHANICS, 2013, 34 : 157 - 167
  • [12] Dimension reduction of Karhunen-Loeve expansion for simulation of stochastic processes
    Liu, Zhangjun
    Liu, Zixin
    Peng, Yongbo
    JOURNAL OF SOUND AND VIBRATION, 2017, 408 : 168 - 189
  • [13] Modeling of Stochastic Wind Based on Operational Flight Data Using Karhunen-Loeve Expansion Method
    Wang, Xiaolong
    Beller, Lukas
    Czado, Claudia
    Holzapfel, Florian
    SENSORS, 2020, 20 (16) : 1 - 19
  • [14] Differentiation of the modified approximative Karhunen-Loeve expansion of a stochastic process
    Ruiz-Molina, JC
    Navarro, J
    Valderrama, MJ
    STATISTICS & PROBABILITY LETTERS, 1999, 42 (01) : 91 - 98
  • [15] REPRESENTATION OF RANDOM PROCESSES USING FINITE KARHUNEN-LOEVE EXPANSION
    FUKUNAGA, K
    KOONTZ, WLG
    INFORMATION AND CONTROL, 1970, 16 (01): : 85 - &
  • [16] A new formulation for the Karhunen-Loeve expansion
    Courmontagne, P
    SIGNAL PROCESSING, 1999, 79 (03) : 235 - 249
  • [17] A note on the optimality of the Karhunen-Loeve expansion
    Keating, Jerome P.
    Michalek, Joel E.
    Riley, James T.
    PATTERN RECOGNITION LETTERS, 1983, 1 (04) : 203 - 204
  • [18] MULTIMODAL DISCRETE KARHUNEN-LOEVE EXPANSION
    GRIM, J
    KYBERNETIKA, 1986, 22 (04) : 329 - 339
  • [19] On the optimality of the discrete Karhunen-Loeve expansion
    Dur, A
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1998, 36 (06) : 1937 - 1939
  • [20] On the optimality of the discrete Karhunen-Loeve expansion
    Universitat Innsbruck, Innsbruck, Austria
    SIAM J Control Optim, 6 (1937-1939):